

Forum Programmation.python URGENT, D'où viennent les artifactes de la FFT de mon signal?

Posté par Tassou le 15 avril 2017 à 16:13.
Licence CC By‑SA.

Étiquettes :

	python

	transformations

	numpy

	fourrier

Salut tout le monde, Je suis vraiement desepérée à la recherche de la cause des artifactes dans le fft de mon signal.

N'ayez pas peur de la longeur du code, la partie importante est tout en bas, au début c'est juste la déclaration des variables et fonctions.

Le tout revient à réaliser un signal disant s_pos et un autre s_neg. le s_neg n'est rien d'autre que s_pos mis au negatif et miroité. Étant ainsi, j 'attends que la transformé de Fourrier de s_neg qu'elle soit la même que: -np.conjugate(S_pos) puisque s_pos est réelle. Mais apparament le miroitement d'une convolution me donne des artifactes. Est-ce que quelqun pourrait SVP me dire pourquoi? et comment je fais pour m'en débarasser et retrouver la même chose pour :

S_neg (Bleu) et S_neg_expected(Rouge) (Voir fichier attaché)?? Merci d'avance !!!

import numpy as np
import matplotlib.pyplot as plt
amp = 18e-3
a = 1/.61e3
b = 5.5
fs=5e6
f0 = fs/2/102
t_min = 0
dt = 1./fs
t_max = (10772) * dt
t = np.arange(t_min,t_max,dt)
x_min = -amp/b
x_max = amp/b
dx = dt*(x_min-x_max)/(t_min-t_max)
x = np.arange(x_min,x_max,dx)
def Lorentzian(xx):
 if not hasattr(xx, '__iter__'):
 xx = [xx]
 res = np.zeros(len(xx))
 for i in range(len(xx)):
 x = xx[i]
 if np.fabs(x) < 0.1:
 res[i] = 1./3. - x**2/15. + 2.* x**4 / 189. - x**6/675. + 2.* x**8 / 10395. - 1382. * x**10 / 58046625. + 4. * x**12 / 1403325.
 else:
 res[i] = (1./x**2 - 1./np.sinh(x)**2)
 return res
def distrib(x):
 res = np.zeros(np.size(x))
 res[int(3*np.floor(np.size(x)/5))] = 6
 res[int(3*np.floor(np.size(x)/5)+20)] = 6
 return res
def mirror(seq):
 output = list(seq[::-1])
 return output
func1 = lambda x : Lorentzian(b*(x/a))
x_s = lambda t : amp * np.cos(2*np.pi*f0*t)/b
signal = lambda x : np.convolve(distrib(x), func1(x)-func1(x)[0], 'same')
Partie importante
s_pos = signal(x_s(t[0:102]))
s_neg = mirror(-s_pos)
S_pos = np.fft.fft(s_pos)
S_neg_expected = -np.conjugate(S_pos)
S_neg = np.fft.fft(s_neg)
plt.figure()
plt.plot(S_neg_expected,'r')
plt.plot(S_neg,'b')

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

