

Journal Chercher des répertoires bookmark avec un fuzzy finder

Posté par anaseto le 04 février 2017 à 18:32.
Licence CC By‑SA.

Étiquettes :
aucune

[image:]

Bonjour Nal,

connais-tu fzf ? C'est un outil en ligne de commande qui permet de sélectionner rapidement une ligne dans un fichier : on tape juste quelques caractères et une heuristique associe un score à chaque ligne, nous présentant en premier la ligne faisant le meilleur score. Il y a d'autres outils semblables (fzy, pick, etc.), et il y a souvent des versions intégrées dans les éditeurs de textes comme vim ou emacs pour chercher des fichiers, buffers, tags, ou bien dans les navigateurs pour chercher dans l'historique ou les bookmarks.

Du coup, comme j'aime bien les bookmarks, j'ai fait une petite fonction shell appelée d qui permet de se déplacer dans un dossier bookmarqué en utilisant fzf.

En pratique pour bookmarquer le dossier courant, ça donne :

$ d b

Et pour se déplacer dans un dossier :

$ d

La fonction n'est pas très longue :

USAGE: d [b]
#
The function jumps to bookmarked directory selected by user with fzf. If
argument "b" is provided, current directory is bookmarked.
#
The D_BOOKMARKS variable can be set to control bookmarks file location. The
D_FUZZY_FINDER variable can be set to use a custom fuzzy finder (default is
"fzf").
#
The bookmarks file is kept sorted by usage, to allow easy removal by hand of
unused bookmarks.
#
Install: just source this file in your shell rc file.
d() {
 local cmd="$1"
 local bookmarks_file="${D_BOOKMARKS:-"$HOME/.d_bookmarks"}"
 local lock_file="${bookmarks_file}.lock"
 local file
 if ["$cmd" == "b"]; then
 file="$(pwd)"
 elif [-n "$cmd"]; then
 echo "d: unknown argument: '$cmd'. Expected 'b' or no argument." >&2
 return 1
 else
 file="$(<"$bookmarks_file" ${D_FUZZY_FINDER:-fzf})"
 fi
 if [! -d "$file"]; then
 return
 fi
 cd "$file" || {
 echo "d: could not enter '$file' directory" >&2
 return 1
 }
 if mkdir "$lock_file" > /dev/null 2>&1; then
 # create bookmarks file if it does not exist
 touch "$bookmarks_file"
 # put $file at the end of the bookmarks file,
 # to keep it sorted by last time usage.
 perl -i.back -ne 'BEGIN{$f = quotemeta(shift);} print unless /^f/;' \
 "$file" "$bookmarks_file" &&
 print -r -- "$file" >> "$bookmarks_file" ||
 echo "d: something went wrong updating bookmarks file" >&2
 rmdir "$lock_file" || {
 echo "d: could not remove lock file '$lock_file'" >&2
 return 1
 }
 else
 echo "d: lock file $lock_file already present" >&2
 return 1
 fi
}

Et puis, comme j'aime bien aussi l'idée de xdg-open pour ouvrir des fichiers en tapant toujours la même commande, j'ai fait un petit script (il s'appelle o celui-ci), qui va utiliser fzf pour sélectionner un fichier à ouvrir. Le script essaie de pas être trop bête et, si le répertoire courant est un dépôt git, il utilisera par exemple git ls-files pour récupérer la liste. S'il semble y avoir trop de fichiers, il limite la profondeur de recherche.

En pratique, c'est normalement :

$ o

Ou, si on veut préciser un répertoire dans lequel effectuer la recherche autre que le répertoire courant :

$ o dossier

Au final, en combinant les deux, j'évite une bonne partie des cd et itérations à coups de <tab> pour me déplacer et ouvrir des fichiers.

Le script o est un peu plus long, du coup j'ai mis les deux scripts ici. En cherchant un peu, j'ai trouvé un ou deux trucs un peu similaires comme ceci pour bash et zsh. J'ai testé mes scripts qu'avec ksh sous OpenBSD, mais a priori ils devraient fonctionner aussi avec bash ou zsh.

Et vous, avez-vous aussi des astuces similaires à partager ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

