

Journal Prise en main de la carte Longan Nano RISC-V de Sipeed

Posté par AnthonyRabine (site web personnel) le 23 décembre 2020 à 14:13.
Licence CC By‑SA.

Étiquettes :

	risc-v

	microcontrôleur

[image:]

Sommaire

	Présentation de l'architecture du RISC-V

	Gigadevice et Nuclei

	Un peu d'assembleur !

	Présentation de la carte électronique

	Arsenal de développement

	Le Hello World de l'embarqué : Blinky

	Hello World plus poussé : L'UART

	Les différentes fréquences et le timer

	NMSIS et le SysTick

	Solutions de débogage

	Conclusion

Nous avons déjà parlé du RISC-V dans un article précédent avec la carte HiFive dotée d'un microcontrôleur pas si intéressant. Celui présenté cette fois-ci semble beaucoup plus standard : il fait le plein de périphériques et de mémoire Flash embarquée.

Présentation de l'architecture du RISC-V

Nous avons déjà un peu présenté l'historique du RISC V dans l'article précédent. Essayons maintenant de découvrir le modèle de programmation ; cela nous servira plus tard lors de débogages et développement bas niveau.

La fondation RISC a rédigé deux spécifications de cette nouvelle ISA (Instruction Set Architecture) :

- Un document général à l'accès non-privilégié

- Les spécifications des accès privilégiés

Qu'est ce que c'est que l'accès privilégié ? Il faut savoir que les processeurs de type "PC", qui sont voués à être utilisés avec un gros système d'exploitation type Linux/Windows/Mac disposent de protection d'accès physique. En gros, c'est le processeur qui s'assure qu'une instruction assembleur peut être exécutée. Cela permet d'offrir une séparation entre les processus systèmes et utilisateur. Sous Linux par exemple, un utilisateur privilégié est 'root'.

Intéressons-nous à cette première documentation qui décrit le coeur RISC-V minimal, le RV32I, ainsi que toutes les extensions optionnelles. En effet, l'architecture décrite permet de créer des processeurs de 32-bits, 64-bits ou 128-bits, c'est à dire du petit microcontrôleur au processeur dopé pour serveurs ou calculs scientifiques (c'est à l'origine le but de cette architecture créée à l'université de Berkley).

Cette première documentation nous montre donc le modèle de programmation, la liste des registres :

[image: image]

L'architecture est donc assez simple, j'aime bien. Nous avons 32 registres à usage générique, tout du moins si on est seul au monde et que l'on ne souhaite pas développer quelque chose de "portable". Typiquement un logiciel développé en assembleur. Bien entendu, il s'agit ici des registres entiers. L'architecture RISC-V dispose de beaucoup d'extensions optionnelles dont par exemple l'extension offrant un jeu de registres flottants (IEEE 754).

Rappel de la codification des extensions :

	Coeur RV32 'I' (A load-store ISA with 32, 32-bit general-purpose integer registers) avec les options :

	M : Integer Multiplication and Division

	A : Atomics

	C : 16-bit Compressed Instructions

	F : Single-Precision Floating-Point

	D : Double-Precision Floating-Point

	Q : Quad-Precision Floating-Point

Au moment de l'écriture de cet article, plusieurs extensions supplémentaires sont prévues mais non encore décites (Bit manipulation, Dynamically Translated Languages, Vector Operations …). On le voit, cette architecture est vouée à évoluer dans les prochaines années.

Enfin, la spécification décrit également le langage assembleur et spécifie une convention d'appel et de comportement (ABI, Application Binary Interface) des registres, ceci étant nécessaires pour préciser quels registres sont utilisés pour les arguments des fonctions, les divers pointeurs, adresses de retour etc.

[image: image]

Chaque cœur RISC-V dispose de son propre contrôleur d'interruption appelé CLIC (Core Local Interrupt Controller), il est dit logical car rattaché à un seul coeur ce qui peut avoir sens dans un composant multi-coeurs.

Gigadevice et Nuclei

D'après mes recherches et ce que j'en ai compris, l'IP du coeur RISC-V est pris chez la société Nuclei qui dispose d'un catalogue complet de coeurs (https://www.nucleisys.com/product/rvipes/n200/). Le notre, c'est celui-ci :

[image: image]

Ce qui va nous intéresser ici est la présence d'un timer dans le coeur même. Typiquement, l'usage sera pour séquencer un système ; chez ARM, ils l'ont standardisé et l'ont appelé SystTick. Je suis un peu déçu d'ailleurs sur ce point, car avoir un timer standardisé permet de passer du code d'un microcontrôleur à l'autre sans ce soucier de ce point.

Pour la performance, le coeur s'annonce plus véloce et moins gourmand que son principal concurrent, la famille Cortex-M :

[image: image]

Bon c'est une documentation constructeur, il faut en prendre et en laisser car on ne connaît pas les conditions de test. En réel, cela dépendera beaucoup de la performance de la Flash embarquée au MCU et de bien d'autres paramètres.

Un peu d'assembleur !

Essayons de tâter un peu plus profondément l'architecture. Pour s'amuser, nous allons utiliser le simulateur en ligne BRISC. On copie le programme ci-dessous qui réalise une petite boucle d'incrémentation d'un registre. Retirez les commentaires, ils ne passent pas sur le simulateur :

 .file "example.c"
 .option nopic
 .text
 .align 2
 .globl example

main:
 li a0, 3 # chargement immédiat d'une valeur
 li a1, 10 # a1 contiendra notre valeur finale de sortie
loop:
 addi a0, a0, 1 # a0 = a0 + 1
 bne a0, a1, end # Branch if Not Equal
 j loop # sinon on saute 'Jump'

end:

Il est possible d'avancer pas à pas et de voir graphiquement le changement des différents registres.

[image: image]

Si vous voulez aller plus loin, Western Digital diffuse un tutorial complet d'assembleur sur Youtube en utilisant la carte HiFive : https://www.youtube.com/watch?v=KLybwrpfQ3I&list=PL6noQ0vZDAdh_aGvqKvxd0brXImHXMuLY.

N'oubliez pas le petit émulateur développé par le génie Fabrice Bellard : https://bellard.org/tinyemu/ qui fournit en plus une image Linux prête à l'emploi !

Présentation de la carte électronique

La société GigaDevice a donc conçu ce microcontrôleur à base du coeur libre RISC-V dans une version RV32IMAC. La version que nous allons utiliser ici est la référence GD32VF103CBT6 qui embarque 128Ko de Flash et 32Ko de RAM. La fréquence du processeur monte à 108 Mhz et les périphériques sont légions : USART, I2C, SPI, CAN, USB, I2S, ADC 12 bits. Bref, le minimum syndical ! Les GPIO des périphériques sont remappables, attention toutefois, dans une certaine mesure (la liste est dans la datasheet).

Que ce soit dans le code source des drivers et le nommage, l'inspiration STM32 est totale et c'est tant mieux car j'adore les STM32. J'ai lu quelque part que le composant était même totalement compatible broche à broche avec certaines versions de STM32.

[image: image]

La carte que nous allons utiliser est la Longan Nano et coûte 5 Euros, avec en option un écran LCD. Ce qui rend le tout assez sympa.

[image: image]

[image: image]

Sur une des extrémités, vous trouverez un port USB-C et à l'autre bout un connecteur JTAG : merci d'y avoir pensé, c'est assez rare pour le souligner. À côté du JTAG, sur le même connecteur, on y trouve l'UART0 qui va nous servir comme organe de débogage (même si a priori on peut s'en servir pour programmer la carte à la manière d'Arduino).

Point d'entrée pour vos documents :

* https://longan.sipeed.com/en/

* https://dl.sipeed.com/LONGAN/Nano/DOC/

Arsenal de développement

Pour commencer, nous allons utiliser Visual Studio Code avec l'extension PlatformIO : à la manière d'Arduino, il vous simplifie le démarrage rapide sur une nouvelle carte en permettant de coder et programmer votre premier bout de code très facilement, en quelques clics ! Ce genre d'outils est idéal pour essayer une carte, même si je pense qu'il faut s'en éloigner si on veut produire du code industriel qui se vend, notamment pour des problématiques de maintenance.

Quoiqu'il en soit, une connexion USB-C suffit pour envoyer votre code dans le micro. La manipulation est la suivante : maintenez le bouton reset et le bouton boot0 situés sur la carte, puis relachez le reset : le bootloader intégré sera exécuté ce qui créera un dispositif de type DFU sous Linux. Cliquez ensuite sur "upload" et c'est parti !!

Comme éditeur de code : restons sur Visual Studio Code, l'intégration avec Segger est possible. Nous tenterons également QtCreator qui fournit une interface C/C++ exemplaire tant au niveau de l'édition de code que du débogage. Il est réactif !

Au niveau de la librairie fournie par GigaDevice : c'est un sans fautes, pour le moment. Là encore on sent l'inspiration ST, ici vous êtes en terrain connu. La librairie est toute simple, légère, de fines fonctions d'abstraction des registres des périphériques. Messieurs les autres fondeurs, merci de vous en inspirer et arrêtez avec vos interfaces graphiques de génération de code, c'est horrible. Un dossier d'exemples est fourni, bref normalement nous avons tout ce qu'il faut pour commencer facilement.

[image: image]

Point d'entrée pour le tutorial PlatformIO : https://docs.platformio.org/en/latest/boards/index.html#gigadevice-gd32v

Si vous voulez obtenir un compilateur déjà pré-compilé pour vos développements, Nuclei en fournit un ici : https://www.nucleisys.com/download.php.

Le Hello World de l'embarqué : Blinky

Le but est ici de faire clignoter une LED. La carte dispose d'une LED RGB tricolore câblée comme ceci :

[image: image]

Le PlateformIO dispose d'un exemple tout fait permettant de faire clignoter la LED embarquée. Pour réaliser un délai entre l'extinction et l'allumage de la LED, l'exemple utilise une lecture bloquante du timer embarqué dans chaque coeur RISC. Attention donc, c'est utile mais cela bloque tout et dans un contexte multi-tâches on utilisera d'autres moyens non bloquants.

#include "gd32vf103.h"
#include "systick.h"
#include <stdio.h>

/* BUILTIN LED GREEN*/
#define LED_PIN BIT(1)
#define LED_GPIO_PORT GPIOA
#define LED_GPIO_CLK RCU_GPIOA

void longan_led_init()
{
 /* enable the led clock */
 rcu_periph_clock_enable(LED_GPIO_CLK);
 /* configure led GPIO port */
 gpio_init(LED_GPIO_PORT, GPIO_MODE_OUT_PP, GPIO_OSPEED_50MHZ, LED_PIN);

 GPIO_BC(LED_GPIO_PORT) = LED_PIN;
}

void longan_led_on()
{
 GPIO_BC(LED_GPIO_PORT) = LED_PIN;
}

void longan_led_off()
{
 GPIO_BOP(LED_GPIO_PORT) = LED_PIN;
}

int main(void)
{
 longan_led_init();
 init_uart0();

 while(1){
 /* turn on builtin led */
 longan_led_on();
 delay_1ms(1000);
 /* turn off uiltin led */

 longan_led_off();
 delay_1ms(1000);
 }
}

Comme le montre la documentation, il va falloir créer une règle Linux pour pouvoir programmer le composant :

sudo nano /etc/udev/rules.d/90-longan-nano.rules
ATTRS{idVendor}=="28e9", ATTRS{idProduct}=="0189", MODE="0666"
udevadm control --reload-rules && udevadm trigger

Hello World plus poussé : L'UART

Cette fonction sera autrement plus pratique : lors de vos développements embarqués, avoir une console série qui affiche le bon déroulement de votre programme est indispensable. Cela doit être une des premières choses à prévoir dans votre développement car cela vous servira tout le temps !

Donc là rien de bien compliqué : il faut d'abord repérer quelle broche nous allons utiliser. Sur le longan, le connecteur d'extrémité contient le brochage Tx/Rx typiquement mis là pour cet usage.

[image: image]

Le code d'initialisation est en deux parties :

- D'une part nous allons utiliser le mode alternatif de la broche PA9, c'est-à-dire non pas en GPIO mais en UART

- D'autre part la configuration du module UART proprement dit à la fréquence voulue :

static void init_uart0(void)
{
 // enable GPIO clock
 rcu_periph_clock_enable(RCU_GPIOA);
 gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_9);

 // enable USART0 clock
 rcu_periph_clock_enable(RCU_USART0);
 // configure USART0
 usart_deinit(USART0);
 usart_baudrate_set(USART0, 115200U);
 usart_word_length_set(USART0, USART_WL_8BIT);
 usart_stop_bit_set(USART0, USART_STB_1BIT);
 usart_parity_config(USART0, USART_PM_NONE);
 usart_hardware_flow_rts_config(USART0, USART_RTS_DISABLE);
 usart_hardware_flow_cts_config(USART0, USART_CTS_DISABLE);
 usart_receive_config(USART0, USART_RECEIVE_ENABLE);
 usart_transmit_config(USART0, USART_TRANSMIT_ENABLE);
 usart_enable(USART0);
}

// retarget the C library printf function to USART0
int _put_char(int ch) // used by printf
{
 usart_data_transmit(USART0, (uint8_t) ch);
 while (usart_flag_get(USART0, USART_FLAG_TBE) == RESET){
 }
 return ch;
}

Notez ici que la fonction _put_char est re-définie : c'est cette fonction qui est au bout d'un printf et se charge d'envoyer un caractère uniquement quelque part : par défaut je pense qu'elle ne fait rien, car nous sommes dans un environnement embarqué. Nous allons envoyer tout caractère reçu vers l'UART.

Et enfin la fonction principale est modifiée en ajoutant notre initialisation et l'appelle du printf();

int main(void)
{
 longan_led_init();
 init_uart0();

 while(1){
 printf("ON\n");
 /* turn on builtin led */
 longan_led_on();
 delay_1ms(1000);
 /* turn off uiltin led */

 printf("OFF\n");
 longan_led_off();
 delay_1ms(1000);
 }
}

Maintenant munissez-vous d'un contrôleur USB-série quelconque pour relier le port série du Longan au PC :

[image: image]

Ouvrez un terminal série sur votre port série créé par la puce FTDI et observez !

[image: image]

Les différentes fréquences et le timer

Ok alors jusqu'à maintenant, nous avons copié-collé un peu de code pris à droite et à gauche. Sauf que nous ne maîtrisons pas grand chose sur la fréquence de fonctionnement. A priori, le délai bloquant fourni par la librairie standard fonctionne vu la fréquence de clignotement de la LED, mais on ne sait pas à quelle fréquence tourne le CPU.

On affiche la fréquence en récupérant la valeur de la variable globale SystemCoreClock qui est initialisée au démarrage, avant le main().

printf("[OST] Starting with CPU=%d\n", (int)SystemCoreClock);

Voici le schéma de la PLL, le CPU est donc bien cadencé à la fréquence maximale ici, soit 108 MHz.

[image: image]

Notons que le timer SysTick offert par le coeur Nuclei est lui divisé par 4 en entrée. Le meilleur moyen de vérifier si la fréquence CPU est correcte est de faire bagoter un GPIO à l'aide d'un timer. Si notre calcul de timer est bon et la fréquence CPU correcte, alors nous devrions voir la bonne fréquene à l'oscilloscope.

NMSIS et le SysTick

Nous l'avons vu, le coeur Nuclei nous offre un timer "bonus" en plus des Timers 0 à 6 que le fondeur GigaDevices propose. Ces derniers sont assez complexes et servent généralement à sortir des PWM, compter des impulsions ou commander des moteurs. Si on peut éviter de s'en servir, profitons-en.

Comment y accéder ? Eh bien, c'est un peu obscure. En fait, la société Nuclei a pondu un ensemble de "standards" d'appellations exactement comme … ARM, avec son CMSIS et Nuclei l'a donc fort logiquement appelé NMSIS.

On y trouve donc dedans ce qui a trait au coeur, dont notre fameux SysTick.

Malheureusement, au moment de l'écriture de cet article, la librairie NMSIS s'intègre très mal à PlatformIO. Il faut donc mieux commencer par l'ensemble cohérent fournit par Nuclei, sur le Github : https://github.com/Nuclei-Software/nuclei-sdk qui contient également la librairie du GD32 adaptée pour l'occasion.

Ce qu'il est possible de faire pour le moment est de copier coller le code se rapportant au SysTick en provenance du NMSIS. Il suffit alors de récupérer l'exemple fournit par Nuclei :

static volatile uint32_t msTicks = 0;
static volatile bool tick_1s = false;
static volatile uint32_t tick_1s_counter = 0;

#define CONFIG_TICKS (TIMER_FREQ / 1000)
#define SysTick_Handler eclic_mtip_handler

void SysTick_Handler(void)
{ /* SysTick interrupt Handler. */
 SysTick_Reload(CONFIG_TICKS); /* Call SysTick_Reload to reload timer. */
 msTicks++; /* See startup file startup_gd32vf103.S for SysTick vector */
 tick_1s_counter++;
 if (tick_1s_counter >= 1000)
 {
 tick_1s_counter = 0;
 tick_1s = true;
 }
}

Et le main :

int main(void)
{
 longan_led_init();
 init_uart0();
 longan_bp1_init();

 uint32_t returnCode = SysTick_Config(CONFIG_TICKS);

 while(1)
 {
 if (tick_1s)
 {
 tick_1s = false;
 printf("[OST] SysTick=%d\r\n", (int)msTicks);
 }

 }
}

Et voilà, sur l'UART vous devriez observer le tick qui s'incrémente. N'oubliez pas le mot clé 'volatile' pour les variables incrémentées dans l'interruption : sans cela, le compilateur effectuera une optimisation ce qui rendra le code non fonctionnel ; en effet, selon son analyse la fonction SysTick_Handler n'est jamais appelée donc il va la supprimer. En ajoutant le mot clé volatile, on lui dit simplement "t'inquiète, cette variable sert bien quelque part, t'occupe et ne touche à rien".

La table des vecteurs d'interruptions est localisée dans le fichier start.S :

[image: image]

Solutions de débogage

Le coeur RISC-V étant assez nouveau, il existe peu de solutions. Je suggère notamment :

	L'incontournable JLink, attention toutefois à la version matérielle de votre sonde ; un tableau résume quelle version est supportée : https://wiki.segger.com/Software_and_Hardware_Features_Overview

	Sipeed USB-JTAG/TTL RISC-V Debugger, un espèce de clone de ST-Link mais qui a l'air de supporter le RISC-V, je l'ai commandé je testerai

	BlackMagic Probe : l'intégration du RISC-V est en cours, non encore fonctionnelle a priori

	OpenOCD via un moniteur série : je ne l'ai pas testé !

Conclusion

Voilà une carte bien sympatique. Il est maintenant temps de réaliser un petit projet avec, et si possible doté d'une sone JTAG !

Le code source du tutorial est ici : https://github.com/arabine/risc-v-tutorial

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/0d6cb9355486bdd8a4244df8567c7667aa9055c855f12496fbda7183.png
Register | ABI Name | Description Saver
x0 zero Hard-wired zero

x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer

x4 tp Thread pointer

x5 t0 Temporary /alternate link register | Caller
x6-7 t1-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
£0-7 £t0-7 FP temporaries Caller
£8-9 £s0-1 FP saved registers Callee
£10-11 | fa0-1 FP arguments/return values Caller
£12-17 | fa2-7 FP arguments Caller
£18-27 | fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

EPUB/e54315096da42e19c60d345a99495115535ef7b1dbd8e04945ca495b.png
CoreMark Dhrystone Area Dynamic Power
(CoreMarks/MHz) (DMIPS/MHz) (K Gates) (mA)

1415799
3386419

36
332 3396
27
185
: l

EPUB/0237f700d03866ce5ed542ac86448aeea7fece8f560c916cc8fc3ba5.png
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak
-weak

eclic_msip_handler
eclic_mtip_handler
eclic_bwei_handler
eclic_pmovi_handler
WWDGT_IRQHandler
LVD_IRQHandler]|
TAMPER_IRQHandler
RTC_IRQHandler
FMC_IRQHandler
RCU_IRQHandler
EXTIO_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA@_Channel@_IRQHandler
DMA@_Channell1_IRQHandler
DMA@_Channel2_IRQHandler
DMA@_Channel3_IRQHandler
DMA@_Channel4_IRQHandler
DMA@_Channel5_IRQHandler
DMA@_Channel6_IRQHandler
ADCO_1_IRQHandler
CANO®_TX_IRQHandler
CAN@_RX0_IRQHandler
CAN@®_RX1_IRQHandler
CAN@_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMERO_BRK_IRQHandler
TIMERO_UP_IRQHandler
TIMERO_TRG_CMT_IRQHandler
TIMERO_Channel_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
12C0_EV_IRQHandler
12C0_ER_IRQHandler
I12C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0O_IRQHandler
SPI1_IRQHandler
USARTO_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBFS_WKUP_IRQHandler
EXMC_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMERS_IRQHandler
TIMER6_IRQHandler
DMA1_Channel®@_IRQHandler
DMA1_Channell_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
CAN1_TX_IRQHandler
CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_EWMC_IRQHandler
USBFS_IRQHandler

EPUB/f6dbcc0b12ccde234db8cc61e90756c9b2c068048dab0d5ebcc04fea.png
(VAT —— (T
(05632007 PC15 1——@ T Ll 8k

EPUB/ef30fa20f205192a29f5fb299079338adb193acd3dad73f0c39925bf.jpg
Learn more at:
https://longan.sipeed.com

[T Control

W Physical Pin
LONGAN o Pin

/SPI Pin
[J12C Pin

(I Serial Pin
(NSS0][TIMI_CFO_ET] (12523W/S) NS52) (JTOI) [PALS] EEF B nalog Pin
SCK0)(TIMI_CH1] [12521CKT[SCK2) TDO) [PB3] EF- ‘ [0 Debug Pin
(I Timer Pin
e [0 usB Pin
@ 125 Pin
(5 clock Pin
] . [—_IRemap Pin
3 2 «® rorts
2 g [CANO 7]
3 = CANO_RX,
z g
z & X0 J[CANI_TX
b4 4 .—m/ PB5] [MOSI2) EMBA@_ TIM2_CH1I)(MOSI0](CANL_RX,
oz e, (TIMZ_CFO)

TIMO_BRKIN],
[TIHO_CHO_OW),
W0 CHI ON
TIMI_CH2) [TX2)/5CL1)/PBI0 a—®
TIMI_CH3) ['RX2)(SDA1)(PB11)F——@®
[FESET B ——

Twitter, Github SI PEE D

@kprasadvnsi https://sipeed.com

154118018 18 08 LV 9V SV WV
AS EASZIGEIE VIESLE BY LV ZLY.

EPUB/e81dffbf06d544f676cd28f1a6c5edbe92749a6f0011e7525f268a4e.png
Figure 5-2. Clock tree

CKOUTOSEL[3:0]

(to FMC) UsB oTG 48 MHz CK_USBFS
1 Prescaler | ¢ TP
SCS[1:0] 115225 (to USBFS)
CK_FMC
CK_IRCBM
8 MHz <234 AHB CK_AHB CK_EXMC
- S o |
IRC8M .32 |aCK.PL 10 g‘fsvs Prescaler [108 MHz max
Bl ORIz max | 45 517 EXMC enable™1 (to EXMC)
PLLSEL PLLMF o Ho
PREDVO AHB enable — (to AHB bus CPU,SRAM DMA)
A.23... CK_CST
432 Mz E 1516 ek 4
HXTAL (to CPU SysTick)
FOLK
PREDVOSEL * >
EXT1 to CK_HXTAL (free running clock)
lcK_ouTo ¢ APBI CK_APB1
¢—— Prescaler — PCLKI
L 12,4816 54 MHz max — 10 APBT perpherits
Peripheral enable
TIMERT.23,456
x8.9.10..., CK_PLL1 if(APB1 prescale K TIMERx
[MP“LSUQO =Ix1 TIMERX =
else x2 endble 1
to TIMER1,23,4,5,6
n2a. | PLLIMF
1516 oK 128 Proscater CrAPEZ PCLK2
%8910 | oK PLL2 —
PREDV1 L{ 14,1620 = | x2 1 +1.24.8,16 108 MHz max ,— o APB2 perphefals
PLL2
i Peripheral enable
PLL2MF TIMERO if(APB2
[prescale =1)xt CK_TIMERX
else x2 TIMERx __|
32.768 KHz CK_RTC enable to TIMERO
LXTAL ot >
(to RTC) 00
10 Prescaler CK_ADCx to ADCO, 1
2468121
3 14 MHz max
RTCSRC[1:0)
40 KHz 11:0] CK_FWDGT -
1RCA40K (to FWDGT)
00xx] NO CLK
0100] CK_SYS
CK_ouTo 0101 CK_IRC8M
0110————— CK_HXTAL
otti—————_ 72 }—cKPLL
1000————— CK_PLL1
100t————"72_}—cK PLL2
1010———— ExT1
011 CK_PLL2

EPUB/3407fc79fc284abf75b24adddd41b283c92853b3c06f3b23f054fb7c.png
isc-V Simulator

RAdaptive and Secure Computing Systems Lab » Boston University

RISC-V Assembly

5 addi zero,zero,0
6 addi zero,zero,0
7 auipc ra,oxe
8 jalr ra,e(ra)
9 addi zero,zero,0
10 addi zero,zero,0
.file "example.c"
.option nopic
.text
.align 2
.globl example
main:
11 1i a0, 3
12 1i a1, 10
loop: 1
13 addi ae, a0, 1
14 bne a@, a1, end
15 j loop
end:
16 addi zero,zero,0
17 addi zero,zero, 0

Registers

Register

zero [0]
sp [2]
tp [4
1 [6]
s0/fp [8]
a0 [10]
a2 [12
a4 [14]
a6 [16]
s2 [18]
s4 [20]
s6 [22]
s8 [24]
s10 [26]

Value
0
1536

o

©O © © ©o © © © © w o o

Register Value
ra 1 12
gp [3] 0

10 [51 0
12 71 0
s1 [91 0
al [11] 0
a3 [13] 0
a5 [15] 0
a7 [17] 0
s3 [19] 0
s5 [21] 0
s7 [23] 0
s9 [25] 0
s11 [27] 0

EPUB/3488ccfb31cafef9c028f0458c8e86f84621c7e76a9de2d20040dba6.png
N T (B8

“

Ultra-Low RV32 2-stage Pipeline Machine, User, Security (PMP, TEE)
Power VEIM/AIC Supenvisor-Mode
i o
)
32-bit AHB-Lite & RISC-V 4-wire & Low Latency Full Development

32-bit APB Standard Debug 2-wire ITAG Interrupt Tookit

EPUB/b8d18b819b3c6ea64f069e335183cdcf8448d90397a0a3d3838f1ce3.jpg
W

e

EPUB/7af9d8c5c99d08b9949bfe0628588d8b330e153aac3f7d852194a078.png
CuteCom - Default

Sessions Help

DEviceZ /dev/ttyUSBO v

‘ Hex V‘ Char delay: ‘ 0ms C‘ ‘ Send file... ‘ ‘ Plain

Input:

[14:39:31:226] ONOFFONOFFONOFFONOFFONOFFONOFF

Clear | [J Hex output [J Logging to: /home/anthony/cutecom.log

Device: /dev/ttyUSBO Connection: 115200 @ 8-N-1

EPUB/de58f5faa96bd3a158d7ae5c39db4b2189efffe3a3e920cdbd7c2910.png
XLEN-1 0
%0 / zeto

HEREER N

x10
x11
x12

x14
15
1
T
1
1

®

®
5

®
<

®
&)

®
9

EERRINEIKISNISE

XLEN
XLE!

CC e]

XLEN

Figure 2.1: RISC-V base unprivileged integer register state.

EPUB/c6e8dc73565970c0626ef21748e84c8846a15744d967de52241a0eba.jpg

EPUB/5567b47caca23cfd8b73a3e650aec77b1b7cffda1afe8422a3cc7529.png
3v3|

LED1

A

R 4 R7 4K7 GD_PC13
G 3 R11 4K7 GD_PA1
B 2 R1Z 4K7 GD_PA2

LED_1615

LED_R
LED_G
LED_B

EPUB/c53c9cb0b2a7974bbc14a468955e3c6efb07d8342a2c3a2f7df5d0e5.png
Figure 2-1. GD32VF103 block diagram

g ‘ [rowron
2 =)
- -
RISC_V L] L] ‘Memory (# — PLL
Py K——=>__Contoter Memary o
e |8 [
g
USE LDO
g e[o [%
EcuCc g sard AHB Peripherals
. —
e ey i
f Controller
GP DMAL g AXTAL —>
Mases 'AHB to APB| 'AHB 10 APB 3-25MHZ j¢——
=T ey Bridgel
: H‘Lg
= =
3 3
| =
& £
t &

EPUB/d5c356ca639e19886b10d567d3cc01ef66c448dad3470850811255b0.png
> BADC

> BBKP

> BCAN

> BCRC

> BDAC

> BDBG

> BDMA

> BEXMC

> BEXTI

> BFMC

> BFWDGT

> BGPIO

> BIC

> BPMU

> BRTC

> BISPI

> BTIMER

> BIUSART

> B3 USBFS

> B WWDGT

v B Firmware
v~ B1 GD32VF103_standard_peripheral
> BInclude
v~ B Source

€ gd32vf103_adc.c
€ gd32vF103_bkp.c
€ gd32vf103_can.c
€ gd32vf103_cre.c
€ gd32vf103_dac.c
€ gd32vf103_dbg.c
€ gd32vf103_dma.c
€ gd32vf103_eclic.c
€ gd32vf103_exmc.c
€ gd32vF103_exti.c
€ gd32vf103_fmc.c
€ gd32vf103_fwdgt.c

EPUB/avatars711063000avatar.jpg

