

Journal trsync : un outil de synchronisation bidirectionnelle pour travailler hors-ligne avec tracim

Posté par bux (site web personnel, Mastodon) le 01 octobre 2021 à 10:35.
Licence CC By‑SA.

Étiquettes :

	sync

	tracim

	libre

	logiciel_libre

	synchronisation

	synchronisation_fichiers

	rust

[image:]

Je viens de stabiliser une toute première version du programme trsync. Il permet de synchroniser un dossier local avec un espace de partage Tracim. L'objectif : Travailler localement sur ses fichiers hébergés sur un un serveur Tracim et ne pas se préoccuper de la synchronisation.

[image: trsync illustration]

Vidéo de démonstration : https://tracim.bux.fr/api/public/guest-download/cfe77068-7a30-4afb-8a54-ef4360039d82/TracimRemoteSync.webm

Pourquoi avoir commencé ce logiciel ?

J'aime et je promeus le logiciel libre. Je suis développeur. J'utilise à titre personnel Tracim pour gérer des documents personnels et professionnels de type documentation et Seafile pour un peu tout le reste (musique, photos, etc). J'avais envie depuis quelque temps de tout passer sur Tracim et le seul point bloquant pour mon usage était la synchro locale et « hors-ligne » de mes fichiers. Je me suis donc lancé dans ce projet. En plus, c'était l'occasion de faire du Rust \o/

Compiler et installer trsync

Pour compiler trsync, les étapes sont les suivantes :

	 Installer Rust

	 Installer les dépendances. Pour Debian like, cela se fait via la commande : apt-get install build-essential pkg-config libssl-dev libsqlite3-dev

	 Télécharger les sources de trsync : https://github.com/buxx/trsync/archive/refs/tags/v0.1.tar.gz

	 Compiler : cargo build

Le tester

Le projet est tout neuf, mais peu d'ores et déjà être testé. Vous pouvez par exemple l'essayer avec mon.tracim.fr (ou sur votre propre Tracim si vous en avez un).

Aujourd'hui trsync n'est dispo qu'en version de développement, donc il faudra nécessairement compiler vous-même le programme (cf section précédente)

Ensuite, pour tester, c'est relativement simple :

	 Créer un compte ou se connecter sur https://mon.tracim.fr

	Relever l'identifiant de l'espace partagé que vous voulez synchroniser

[image: mon tracim example]

	Lancer le processus de synchronisation depuis le dossier des sources (dans un terminal) : cargo run /mon/dossier/Tracim/Test mon.tracim.fr 14 MonUserNameSurMonTracimFr

À noter que le processus est conçu comme un démon et si vous le laissez tourner il fera la synchronisation en temps réel en fonction de vos actions locales ou des actions réalisées par d'autres personnes sur le serveur

Comment ça marche ?

Tout le fonctionnement du programme repose sur les éléments suivants :

	 Tracim propose une communication bidirectionnelle :

	 une API REST permettant de faire des opérations sur le serveur (transmission d'informations du client vers le serveur)

	 un socket SSE permettant d'être informé des opérations qui sont réalisés sur le serveur (transmission d'informations du serveur vers le client)

	 trsync écoute le système de fichier local en s'appuyant sur inotify (ou équivalent selon le système d'exploitation)

	 trsync gère un index local représentant l'état local et l'état distant.

Dans les grandes lignes, l'algorithme de trsync est le suivant :

	 Au démarrage :

	 Compare l'état des fichiers du dossier avec l'index

	 Compare l'état des fichiers sur Tracim avec l'index

	 Puis :

	 Surveille les changements locaux (à l'aide de inotify par exemple)

	 Surveille les changements sur Tracim (à l'aide des TLM introduits dans la version 3)

	 Chaque changement donne suite à une résolution qui consiste à modifier les fichiers locaux ou sur Tracim tout en maintenant l'index local.

Comme évoqué précédemment, tout le fonctionnement repose sur les APIs standards de Tracim : API REST intégrées dans Tracim 2 et SSE intégrés dans Tracim 3 (tiens, d'ailleurs, on attend toujours la dépêche promise en janvier dernier au sujet de la nouvelle version ;)

C'est l'occasion de contribuer à un projet opensource et de vous mettre au Rust ;)

Pourquoi avoir choisi Rust ?

Parce qu'à mon avis et avec mes quelques années d'expériences sur ce langage, c'est le meilleur choix pour un programme que je souhaite aussi maintenable et stable que possible. Il est notamment très adapté dans le contexte de trsync pour les raisons suivantes :

	 doit pouvoir être déployé sur des machines quelconques (Linux, Windows, MacOS)

	 doit pouvoir évoluer vers une interface graphique - des bindings QT (entre autres) existent pour Rust

	 travail nativement en exécution parallèle (envoi d'instructions sur le serveur Tracim en parallèle de l'écoute du socket SSE) -> Rust est idéal pour ça.

Let's go

Je suis preneur de toutes les idées, remarques et remontées de bugs ! Et bien sûr de toute contribution !

Pour celles et ceux qui souhaitent le faire directement sur la forge : https://github.com/buxx/trsync

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/fd94aea0c393f51450d70d4553cc50379605df9a4790b1516e35530a.png
1 O ® Tableau de bord -

<« C @ O & hty tracim.fr

¥ Favoris
Essais smartphone

Test

EPUB/3f61615c0bd7f38812cfa68946551f2a651cfb602d996d447156a5fe.png

EPUB/avatars763072000avatar.jpg

