

Journal Lilypond + Frescobaldi + … (aka «En avant la musique !»)

Posté par Claude SIMON (site web personnel) le 23 mars 2023 à 19:19.
Licence CC By‑SA.

Étiquettes :

	lilypond

	musique

	midi

	partitions_musicales

	atlas_toolkit

[image:]

Sommaire

	Introduction

	Installation

	Interface

	Les scripts

	
Améliorations possibles
	Musique

	Paramètres

	Fichier de configuration

	Astuce

Introduction

Pour créer des partitions musicales, il existe un excellent logiciel appelé LilyPond qui, en gros, est à MuseScore ou Finale ce que TeX est à LibreOffice Writer ou Microsoft Word.

LilyPond prend en entrée un fichier texte que vous pouvez aisément manipuler à l'aide de votre éditeur de texte favori. Il existe néanmoins Frescobaldi qui facilite l'édition de fichiers LilyPond au point de pouvoir être considéré, en paraphrasant, comme une sorte d'EDI pour Lilypond.

On peut également utiliser un logiciel comme Denemo ou Rosegarden pour saisir de la musique via une interface graphique ou un périphérique d'entrée MIDI, voire une entrée audio, et générer le fichier LilyPond correspondant.

Jusqu'à présent, j'utilisais un petit utilitaire de ma création dans lequel on saisit, dans un premier temps, des notes avec un clavier MIDI pour, dans un second temps, leur affecter une durée, comme détaillé ici-même.

Cependant, son interface étant textuelle, cet utilitaire s’avérait assez peu pratique par certains aspects. J'ai donc essayé Denemo, avec lequel on est censé pouvoir faire la même chose avec une interface graphique. Ça doit être faisable, mais je n'ai pas trouvé comment le faire facilement. Ajoutez à cela une certaine propension du logiciel au plantage, et vous comprendrez que je n'ai pas insisté.

Donc, j'ai repris mon petit utilitaire, et je lui ai ajouté une interface graphique, ce qui donne ça :

[image: aperçu de l'interface du logiciel msfgq]

Il est loin d'être complet (voir la section Améliorations possibles ci-dessous) mais il est néanmoins suffisamment fonctionnel pour un usage basique.

Installation

NOTA : pour essayer le logiciel sans avoir à l'installer, c'est par ici (bouton Run, un peu de patience, puis clic sur l'URL) : https://q37.info/s/tpp7ckkv.

Pour compiler ce logiciel, il faut :

	la commande GNU make ;

	un compilateur C++ ;

	la bibliothèque ALSA avec ses fichiers de développement (libasound-dev).

Pour la compilation proprement dite :

	récupérer le contenu du dépôt https://github.com/epeios-q37/faasq ;

	de l'intérieur de ce dépôt, lancer la commande make (génération de faasq) ;

	récupérer le contenu du dépôt https://github.com/epeios-q37/msfgqxdh ;

	de l'intérieur de ce dépôt, lancer la commande make (génération de libmsfgqxdh.so).

Pour lancer l'application, se placer dans le répertoire msfgqxdh, puis lancer : <chemin-vers>/faasq ./msfgqxdh. En supposant que les deux dépôts ci-dessus soient dans le même répertoire, en étant placé dans le répertoire du dépôt msfgqxdh, cela donne : ../faasq/faasq ./msfgqxdh.

Pour que les scripts fournis avec le logiciel fonctionnent (voir section dédiée plus bas), il faut que lilypond et xsltproc soient installés et accessible via le PATH.

Si vous voulez déplacer les exécutables, il faut veiller à ce que les fichiers suivants soient dans le même répertoire que l'exécutable concernés :

	pour faasq : faasq.xcfg et faasq.xlcl ;

	pour libmsfgqxdh.so : msfgqxdh.xcfg, msfgqxdh.xlcl et xmld2ly.xsl.

Interface

L'interface est découpée en zones dont voici la description :

	
Midi in (Parameters/Devices/In) :

	les dispositifs d'entrée MIDI connectés au système apparaissent ici, le bouton Grab permet d'activer celui sélectionné,

	le bouton Grab permet également à la session en cours d'utilisation de capturer les évènements MIDI issus du périphérique ;

	
Key (Parameters/Signature/Key) : le nombre de dièses ou de bémols de l'arm(at)ure ;

	
Time (Parameters/Signature/Time) : métrique de la mesure :

	
Score/Preview : aperçu du fragment musical ;

	
Score/Duration/Rest : permet diverses modifications de la note sélectionnée (on peut également utiliser des raccourcis clavier) ;

	
Score/Width (Parameters/Width) : nombre de notes par portée de l'aperçu ci-dessus ;

	
Score/(dernière zone) : permet de déplacer le curseur (on peut aussi cliquer sur une note), et d'effacer une ou l'ensemble des notes ;

	
Audio : permet de piloter le lecteur audio ;

	
Keyboard : clavier virtuel, qui peut être caché ; s'il y a un dispositif d'entrée MIDI connecté au système, ce clavier est caché par défaut ;

	
Scripts (Definitions/Scripts/Script) : permet de lancer les différents scripts qui sont définis dans la configuration (voir section suivante), et dont le résultat est affiché dans Output, sauf si Embedded est décoché, auquel cas ce résultat s'affiche dans une nouvelle page.

Les scripts

Les boutons de la zone Scripts sont générés à partir de la section Definitions/Scripts du fichier de configuration msfgqxdh.xcfg. Voilà le contenu de cette section correspondant à l'illustration ci-dessus :

<Scripts>
 <Script
 id="_ABC"
 Label="ABC (debug)"
 Mime="text/plain"
 ># Built-in script. 'id' value of '_ABC' is reserved.</Script>
 <Script
 id="text"
 Label="XML (as text)"
 Mime="text/plain"
 >while read x ; do echo $x ; done | base64</Script>
 <Script
 id="xml"
 Label="XML"
 Mime="text/xml"
 >while read x ; do echo $x ; done | base64</Script>
 <Script
 id="xsl"
 Label="XSL"
 Mime="text/xml"
 >base64 ./xmld2ly.xsl</Script>
 <Script
 id="ly"
 Label=".ly"
 Mime="text/plain"
 >xsltproc "./xmld2ly.xsl" - | base64</Script>
 <Script
 id="png"
 Label="PNG"
 Mime="image/png"
 >xsltproc "./xmld2ly.xsl" - | lilypond --png -o msfgqxdh.tmp - ; base64 ./msfgqxdh.tmp.png ; rm msfgqxdh.tmp*</Script>
 <Script
 id="pdf"
 Label="PDF"
 Mime="application/pdf"
 >xsltproc "./xmld2ly.xsl" - | lilypond -o msfgqxdh.tmp - ; base64 ./msfgqxdh.tmp.pdf ; rm msfgqxdh.tmp*</Script>
</Scripts>

Le contenu de la section Output correspondant à l'illustration ci-dessus a été généré avec le bouton PDF.

Une fois satisfait par le résultat, on affichera les notes au format Lilypond à l'aide du bouton .ly, que l'on pourra alors copier/coller.

La balise Script contient le script à exécuter, et a pour attributs :

	
id, dont la valeur est libre, mais qui doit être unique ;

	
Label, dont la valeur sera utilisée comme libellé du bouton ;

	
Mime, dont la valeur doit correspondre au type MIME du contenu généré par le script.

Les scripts reçoivent sur l'entrée standard un flux XML décrivant les notes saisies, et doivent générer sur la sortie standard un contenu en base64, d'où la présence de la commande homonyme dans les scripts.

Améliorations possibles

Musique

	Gestion des tuplets (duolet, triolet…) ;

	gestion des accords ;

	gestion des anacrouses ;

	choix de la figure de note par défaut autre que la noire ;

	choix d'une clef autre que celle de sol.

Paramètres

Les valeurs par défaut de certains composants de l'interface graphique peuvent être définis dans la section Parameters du fichier de configuration msfgqxdh.xcfg. Les balises correspondantes sont précisées entre parenthèses dans la section Interface ci-dessus.

Il faudrait rendre cela possible pour d'autres composants de l'interface.

En outre, il existe un mécanisme qui permet de surcharger certaines valeurs de la configuration avec des arguments de la ligne de commande (voir https://q37.info/computing/epeios/configuration). Ce mécanisme ne fonctionne actuellement pour la configuration d'une bibliothèque dynamique.

Fichier de configuration

Le procédure de publication du logiciel stocke actuellement la configuration dans un seul fichier (msfgqxdh.xcfg), mais cette dernière est en réalité constituée de plusieurs fichiers, qui contiennent des instructions qui sont traitées par un préprocesseur XML. Ainsi, voici la section Scripts ci-dessus avant son passage par le préprocesseur :

<Scripts>
 <xpp:bloc>
 <xpp:ifeq select="prod" value="no">
 <xpp:define name="xmld2ly">
 <xpp:bloc>/home/csimon/hg/epeios/stable/xmld2ly.xsl</xpp:bloc>
 </xpp:define>
 </xpp:ifeq>
 <xpp:ifeq select="prod" value="yes">
 <xpp:define name="xmld2ly">
 <xpp:bloc>./xmld2ly.xsl</xpp:bloc>
 </xpp:define>
 </xpp:ifeq>
 <xpp:define name="LilyCommon">
 <xpp:bloc>
 <xpp:bloc>xsltproc "</xpp:bloc>
 <xpp:expand select="xmld2ly"/>
 <xpp:bloc>" - | lilypond</xpp:bloc>
 </xpp:bloc>
 </xpp:define>
 <xpp:define name="Base">
 <xpp:bloc>while read x ; do echo $x ; done | base64</xpp:bloc>
 </xpp:define>
 </xpp:bloc>
 <Script id="_ABC" Label="ABC (debug)" Mime="text/plain">
 <xpp:bloc># Built-in script. 'id' value of '_ABC' is reserved.</xpp:bloc>
 </Script>
 <Script id="text" Label="XML (as text)" Mime="text/plain">
 <xpp:expand select="Base"/>
 </Script>
 <Script id="xml" Label="XML" Mime="text/xml">
 <xpp:expand select="Base"/>
 </Script>
 <Script id="xsl" Label="XSL" Mime="text/xml">
 <xpp:bloc>base64 </xpp:bloc>
 <xpp:expand select="xmld2ly"/>
 </Script>
 <Script id="ly" Label=".ly" Mime="text/plain">
 <xpp:bloc>xsltproc "</xpp:bloc>
 <xpp:expand select="xmld2ly"/>
 <xpp:bloc>" - | base64</xpp:bloc>
 </Script>
 <Script id="png" Label="PNG" Mime="image/png">
 <xpp:expand select="LilyCommon"/>
 <xpp:bloc> --png -o msfgqxdh.tmp - ; base64 ./msfgqxdh.tmp.png ; rm msfgqxdh.tmp*</xpp:bloc>
 </Script>
 <Script id="pdf" Label="PDF" Mime="application/pdf">
 <xpp:expand select="LilyCommon"/>
 <xpp:bloc> -o msfgqxdh.tmp - ; base64 ./msfgqxdh.tmp.pdf ; rm msfgqxdh.tmp*</xpp:bloc>
 </Script>
</Scripts>

Il faudrait donc améliorer la procédure de déploiement pour conserver le découpage en plusieurs fichiers, ainsi que les instructions préprocesseurs utiles (possibilité de définir des scripts différents en fonction de la plateforme d'exécution, par exemple).

Astuce

L'encombrement et/ou la disposition du périphérique d'entrée MIDI sont parfois tels qu'il n'est pas facile d'utiliser ce périphérique et d'avoir en même temps accès à l'écran et/ou au clavier de l'ordinateur sur lequel le périphérique est connecté. Dans ce cas, vous pouvez avoir accès à l'interface du logiciel à partir d'un smartphone ou d'une tablette en scannant le code QR généré par le logiciel. Pour un fonctionnement correct, il est alors nécessaire de cliquer sur le bouton Grab.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b022b2ded7f0c52503ce7323ab0b257d456db79fddc984d0a327a292.png
Midi in Key

No devices available v [Grab| || (3v] O # @ b
Score
Preview:
0 - 2) — |
[(ESEIES S eSS S S
T T T 14 T (4
Duration/rest (keys (1) to (7], (8], [-] & [-)) ————— Width
o I3 1] 4]

AT

Scripts

A8 (debug) | [xML (as text) (x| (xsL| [y | [pnG] [oF| £ Embedded

v Output
@ Q 1 |of1 =

»

EPUB/avatars890011000avatar.png

