

Journal Un utilitaire pour formater la sortie de avr-objdump

Posté par FantastIX le 04 juillet 2022 à 00:30.
Licence CC By‑SA.

Étiquettes :

	développement

	embarqué

	atmel

	désassembleur

	outil

[image:]

… ou l'heure de l'auto-promo a sonné :-D.

Bonjour à tous.

Un de mes passe-temps est le développement embarqué, notamment avec les micro-contrôleurs et surtout ceux de Atmel (aujourd'hui Microchip). J'ai toujours été quelque peu insatisfait de la sortie de l'outil avr-objdump. En effet, ce dernier, s'il demande le type de processeur (plus exactement l'architecture), est incapable de sortir autre chose que les adresses mémoire des registres au lieu de leur nom.

Alors, ça me chatouille. Ou ça me gratouille, je sais plus trop.

Ni une ni deux, j'ai un jour dégainé Geany, Python et mon envie de corriger ça. Le tout a donné adump.py, un script qui s'enroule autour de avr-objdump et en transforme la sortie en remplaçant les adresses "connues" par le nom des registres correspondants.

Et comme ça ne suffisait pas, j'ai ajouté un peu de style avec couleurs et quelques attributs de texte (gras et italique) pour faciliter la consultation.

Voici ce que ça donne, en n'images:

Le style "papyrus":

[image: Désassemblage avec le style "papyrus"]

Le style "marine":

[image: La même vue avec le style "marine"]

Le style par défaut:

[image: Le style de coloriage par défaut]

Il y en a d'autres et on peut en ajouter à volonté. Bien sûr, la traduction des adresses en noms de registres:

[image: Exemple de désassemblage pour l'ATtiny1634]

Le dépôt

Comme ça fait quelques années que ce petit outil me sert, j'ai décidé de le partager. Le code est disponible sur mon dépôt SourceForge. Je n'ai pas suivi de ligne de conduite… Pythonique et me suis contenté de déposer les fichiers dans /usr/local/bin. Je n'ai pas prévu d'en faire un paquet Python et les processeurs disponibles ne sont que ceux dont je me suis servis jusqu'à présent mais l'outil est extensible, je l'espère très facilement.

La syntaxe

L'utilisation en ligne de commande est quasiment identique à avr-objdump, à ceci près que c'est le nom du CPU qui est demandé au lieu de l'architecture (e.g. avr5, avr35, …)

adump.py atmega328 --color -SCt app.elf # Coloration par défaut pour l'ATmega328[p]

adump.py attiny45 -D -b binary demo.bin # Désassemblage d'une image binaire

L'argument --help donne une explication sommaire sur la syntaxe.

Le fonctionnement interne

Le script reconnaît des arguments supplémentaires grâce au module argparse. Les arguments non reconnus sont passés au programme avr-objdump, qui est ensuite exécuté. Le script analyse chaque ligne depuis l'interface standard de sortie. Si celle-ci contient l'adresse d'un registre, elle est aussitôt traduite.

La correspondance CPU/liste des registres se fait par un module spécifique au CPU indiqué à la ligne de commandes. Le fichier principal, arch.py recense les correspondances entre les CPU et l'architecture, telles qu'apparaissant dans la documentation de avr-gcc.

Cerise sur le gâteau, j'ai aussi voulu trier par ordre numérique les adresses de la table des symbôles (lorsque l'argument -t est passé à avr-objdump). L'outil emploie les expressions régulières pour l'analyse de la syntaxe.

N'hésitez pas à me faire part de tout commentaire éventuel sur ce projet. J'espère juste qu'il sera utile à plus d'une personne que moi tout seul…

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/1bb4472730086b79b9f2baea46f9d55688e71529da82733f9c966a1f
)00000c2 <.Loc.54>:

c2
c4
b
c8

else if (__tmp > 65535)

{

01 97
00 97
d1 7
f7 cf

__ticks = 1;

Vi __ticks
__ticks = (uintl6_t) (_ms * 10.

while(__ticks)
sbiw
sbiw
brne
rimp

= requested delay in 1/10 ms
0);

124, 0x01
124, 0x00
.-12
.-18

1
]
Oxbc <.L3>
0xb8 <.L4>

EPUB/d01829c25c89f76218336faa2b271b2aaed5727156caca98f67670cd
000000c2 <.Loc.54>:

Weackstle 16
else if (__tmp > 65535)
{
11 __ticks = requested delay in 1/10 ms
__ticks = (uintl6_t) (__ms * 10.0);
while(__ticks)
c2: o197 sbiw 124, ox01 g,
ca: 00 97 sbiw 124, 0x00 ;o
b 1 brne .-12 ; Oxbc <.L3>
B3 = et rjmp .-18 ; 0xb8 <.L4>

000000ca <_exit>:
ca: 8 94 cli

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/223690b7035e65e4d59e86b0133b3d707edce1f6946bb6512b619c96
000000c2 <.Loc.54>:

c2:
c4:
c6:
c8:

__ticks = 1;
else if (__tmp > 65535)
(
77 __ticks = requested delay in 1/10 ms
__ticks = (uintl6_t) (__ms * 10.0);
while(__ticks)
01 97 sbiw 124, 0x01 Pl
00 97 sbiw 124, 0x00 ;o
d1 7 brne .-12 ; oxbc <.L3>
7 of rjmp .-18 ; oxbg <.L4>

000000ca <_exit>:

ca:

8 94 cli

EPUB/8bddfa8e66cb0bfae4494b6b4499384f11f60f7680d547853ec37d59
a2: 89 b9 out PORTC, 124 ;9

00000024 <.LBBA2>:
pue() &= ~mask;
ad: 7298 cbi PUEB, 2 ; 14

00000026 <.LBB4G6>:
static constexpr void output(uint8_t mask) { dir() [= mask; }
a6: 62 9a sbi DDRB, 2 ; 12

00000028 <.LBB48>:
static constexpr uint8_t test(uint8_t mask) { return in() & mask; }

a8: 8b bl in 124, PINB H!

PPOPPPaa <.Loc.33>:

