

Journal Comment être un développeur désirable

Posté par Julien Jorge (site web personnel) le 08 avril 2016 à 18:41.
Licence CC By‑SA.

Étiquettes :

	développeur

	retour_d_expérience

[image:]

Bonjour 'nal,

J'ai pris ma plume voilà plusieurs semaines pour poser sur papier quelques pensées sur le métier de développeur (j'en suis un) et sur la construction d'un logiciel d'une manière générale. L'idée initiale était de prendre un peu de recul sur quelques comportements qui me semblaient essentiels pour faire du bon boulot, que j'ai observés ou bien que je m'efforce de suivre, puis de partager le résultat avec mes confrères afin de connaître leur opinion et apprendre ce qui est essentiel de leur point de vue.

Très rapidement ce qui devait être un petit document d'une page s'est transformé en une dizaine de pages. Alors j'ai dû mettre un peu d'ordre dans le tout et je l'ai publié sous la forme de cinq articles sur Medium. Si je t'écris aujourd'hui, que je porte ces articles à ton attention, c'est pour recevoir les précieux retours de tes lecteurs. Car, soyons honnêtes, où se trouve l'élite technique si ce n'est sur LinuxFr ?

L'ensemble avant éclatement en plusieurs parties devait s'appeler How to be a desirable developer. Tu as deviné, tout est rédigé en anglais, alors prépare-toi avant de cliquer sur les liens des cinq parties ci-dessous:

Be a leader, not a hero Jusqu'à il y a quelques années encore je programmais comme pour montrer que j'étais cap'. J'avais envie d'être sur toutes les parties du code, c'était super stimulant au point de me retrouver à coder jusqu'à quatre heures du matin. Aussi, le fait d'écrire le code m'évitait d'avoir à discuter de la solution des autres. C'était super stupide. Aujourd'hui je suis de plus en plus intéressé par la discussion technique et les solutions trouvées en équipe. J'aime toujours coder les solutions mais j'aime aussi faire la revue du code d'un collègue. Cette première partie parle de ces comportements.

Be reliable Vous est-il déjà arrivé d'annoncer « j'arrive dans vingt minutes » pour n'arriver que trente minutes plus tard ? Vous est-il déjà arrivé d'annoncer « j'ai presque fini mon code » et d'être encore à le modifier trois jours plus tard ? Cela me met assez mal à l'aise quand ça m'arrive, et ça arrive assez facilement si on ne fait pas attention. On donne une estimation de la tâche d'un point de vue macro, puis quand on rentre dans les détails, le temps de se lever, de mettre un manteau, de fermer la porte, démarrer la voiture, faire le trajet, se garer, marcher, on a finalement prit dix minutes de plus. Pendant ce temps, les autres attendent. Cette deuxième partie traite de ce problème de sous estimation par les développeurs et de la tendance du « presque prêt ».

Be precise, be meticulous Quand j'apprenais la programmation et que je n'avais aucune idée de comment fonctionnait un ordinateur je me retrouvais à régler mes boucles et testant toutes les combinaisons de bornes : on part de 0 ou 1 ? et on s'arrête à n ou n-1 ? je testais bêtement jusqu'à avoir le résultat attendu, sans comprendre, c'était de l'approximation au plus bas niveau. C'était une époque ou j'osais nommer mes variables jeNeSaisPasCommentNommerCetteVariable… Maintenant je n'ai plus de problème avec mes boucles et j'essaie d'être clair partout : dans mes noms de variables, dans l'organisation de mes fonctions, de mes fichiers, de mon projet. J'essaie de construire l'ensemble de manière à ce que mes relecteurs n'aient jamais à se demander ce qu'ils sont en train de lire. Cette partie parle de l'importance d'être précis et soigneux dans son travail ainsi que de l'intérêt d'étendre cela à nos relations de travail.

Keep focus on the feature Vous souvenez-vous ? Il y a plus de dix ans, je venais sur LinuxFr pour vous parler du jeu Plee the Bear que je développais avec un ami. À l'époque nous pensions qu'il nous faudrait deux ans pour le terminer. Huit ans après nous avons arrêté en pensant toujours qu'il ne restait plus que deux ans de travail pour le terminer. A posteriori je me rends compte que nous avons passé toutes ces années à coder sans cesse des trucs géniaux qui devaient nous permettre d'aller plus vite ou d'autres trucs cools qui donnaient une autre dimension au jeu. Tout sauf dessiner, construire des niveaux et coder le gameplay. C'était clairement très formateur et j'y ai pris beaucoup de plaisir, mais ça n'a jamais donné ce que l'on peut appeler un jeu vidéo. Cette quatrième partie parle de l'importance de se restreindre à coder les fonctionnalités attendues afin de maîtriser la progression du projet, de savoir résister à l'envie de faire des à côtés tout de suite sous prétexte que ça à l'air génial ou que ça pourrait être utile un jour.

Write your ideas down Cette partie est le pendant de la précédente, elle aborde la question du traitement des besoins et envies qui surgissent pendant la construction du logiciel. Le fait de se restreindre à la fonctionnalité est efficace autant que frustrant. Ici il est question de la priorisation et de l'intégration dans le flux de travail de toutes ces idées géniales et outils indispensables afin de répondre aux envies des uns et des autres. Cette partie se termine sur une liste d'articles et de livres que j'ai particulièrement appréciés.

Et toi, cher lecteur, que penses-tu de ton métier ? Qu'est-ce qui qualifie un « bon » dans ton domaine ? Et dis-moi, qui sont tes modèles ?

Et pour finir, as-tu des des recommandation lecture à nous faire ? En ce moment j'hésite à me lancer dans The Pragmatic Programmer ou Programming Pearls. Qu'en penses-tu ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars309040000avatar.png

