

Journal Letlang, encore un nouveau langage de programmation

Posté par David Delassus (site web personnel) le 06 janvier 2022 à 01:29.
Licence CC By‑SA.

Étiquettes :

	letlang

	langage

	programmation

	fonctionnelle

	langage_de_programmation

[image:]

Sommaire

	Un peu de contexte

	
Quelques amuse-gueules
	Système de type

	Null et undefined

	Coroutines et Streams

	Effets de bord et exceptions

	Ensembles infinis

	Bravo

Bonjour Nal,

Cela faisait longtemps que je ne t'avais pas écrit, mais je n'avais pas grand chose de pertinent à dire, tu me pardonneras j'espère.

Aujourd'hui, je vais te parler d'un de mes "side-project", j'ai nommé Letlang.

Si tu as la flemme de tout lire, tu peux aller mettre en favoris le site web https://letlang.dev pour une lecture du soir.

DISCLAIMER: Très peu de code existe pour l'instant, le projet en est à ses balbutiements. Même le design de la syntaxe et fonctionnalités ne sont pas définitifs.

Un peu de contexte

Au cours de ma carrière, j'ai pu toucher à de nombreux langages de programmation, et je me suis spécialisés dans certains. Je regarde aussi les petits nouveaux qui génèrent de l'engouement, ou les propositions d'améliorations de langage existant (coucou TC39, un jour je comprendrais ton nom, promis).

Pour chacun de ces langages, j'ai une liste de choses qui me déplaisent et une liste de choses que j'adore. J'en suis venu à me poser la question suivante:

A quoi ressemblerait mon langage idéal ? Celui dont la liste de choses qui me déplaisent n'existerait pas.

Un papier, un crayon plus tard, je commençait à décrire Letlang.

Quelques amuse-gueules

Tout d'abord, il s'agit d'un langage de programmation fonctionnelle, paradigme dont je suis tombé éperdument amoureux. Le compilateur est implémenté en Rust.

Il s'inspire de Elixir (mon petit favori), Python, Rust, Go (et pourtant je déteste ce langage), TypeScript et des mathématiques.

Système de type

Letlang a ce que j'appelle un typage strict (j'aime pas la notion de fort/faible) :

On vérifie la cohérence des types le plus souvent possible, à la compilation comme à l'exécution

Cependant, à la différence de la plupart des langages de programmation, une valeur n'a pas un unique type. Au contraire, je m'inspire ici des mathématiques :

	
42 est un entier mais aussi un réel

	
(1; 2) est un vecteur 2D mais aussi une matrice 2x1

De la même manière, en Letlang, c'est la définition d'un type qui détermine si une valeur lui appartient. Ainsi, je peux écrire :

class int(n: number) check {
 frac(n) = 0
}

Ici je défini un type int qui est construit à partir d'un number nommé n. Je lui rajoute un prédicat que tout n lui appartenant doit valider, ici: la partie décimale du nombre doit être 0.

Les prédicats sont une logique d'ordre supérieur (Higher Order Logic), je peux ainsi définir le type suivant :

class even(n: int) check {
 thereis k: int, n = 2 * k
}

Le prédicat dit qu'il existe un entier tel que n = 2 * k, qui est la définition mathématique d'un nombre pair. Ainsi 42 appartient aux types number, int et even, alors que 43 appartient uniquement aux types number et int.

On peut également combiner plusieurs types en un seul avec les opérateurs |, & et ! :

class odd(n: int & !even)

Par définition, un nombre impair est un entier qui n'est pas pair.

Pour terminer sur le système de type, on a les types génériques :

class ok<T>(val: (:ok, T))
class err<E>(val: (:error, E))
class result<T, E>(val: ok<T> | err<E>)

Les paramètres d'un type générique peuvent être contraint à un autre type :

class vector2<T: int | float>(xy: (T, T))

Dans l'exemple ci-dessus, vector2<int> et vector2<float> existent, mais vector2<string> génèrera une erreur de compilation.

Null et undefined

En Letlang, une variable peut ne pas avoir de valeur définie, mais la valeur null ou undefined n'existe pas.

C'est particulièrement utile pour travailler avec des équations :

let x: int # x n'a pas de valeur, mais cela sera un entier
let x > 0 # toujours pas de valeur, mais elle est positive

x - 3 = 0 # cette équation possède une solution, donc l'expression retournera true
1 / x = 0 # aucune solution n'existe pour cette équation, donc l'expression retournera false

NB: = est un opérateur de comparaison, == dans la plupart des langages. L'opérateur d'assignation est :=.

De la même manière, on pourra définir la valeur de x grâce au mot clé let :

let x: int # x n'a pas de valeur
let x - 3 = 0 # une seule solution existe, x = 3

Attention avec cette notation cependant:

let x: number
let 1 / x = 0 # produira une erreur, car aucune solution n'existe.

Pour résumer :

	le mot clé let est une assertion de la part du développeur au compilateur/runtime

	les variables sans valeur définie peuvent être utilisées dans des comparaisons

	une variable est définie si on lui assigne une valeur avec := ou si l'ensemble des définitions let produit une unique solution

Coroutines et Streams

En Letlang, comme en Go, les fonctions n'ont pas de couleur.

N'importe quelle fonction peut être exécuté en parallèle :

	le mot clé coro transforme un appel de fonction en coroutine

	le mot clé join permet d'attendre la fin d'une coroutine et d'en récupérer le résultat

Un exemple vaut 1000 mots :

import stdlib as std

func main(args: list<string>) -> :ok {
 c := coro std.strlen("foo")
 # do other stuff
 let 3 = join c

 :ok
}

Les streams sont des objets qui permettent de communiquer avec des coroutines :

	envoyer une valeur dans un stream est instantané

	lire une valeur depuis un stream est bloquant tant que le stream est vide

let s: stream<int>
let v: int

écrit dans le stream
s << 42

lit depuis le stream et place le résultat dans la variable v
s >> v

Ce qui peut donner par exemple :

func double(s: stream<int>) -> :ok {
 let x: int

 s >> x

 match x {
 -1 => :ok,
 _ => {
 s << (x * 2)
 double(s)
 }
 }
}

func main(args: list<string>) -> :ok {
 let s: stream<int>

 c := coro double(s)

 s << 1 << 2 << 3 << 4 << -1

 let :ok = join c

 let (a, b, c, d): (int, int, int, int)

 s >> a >> b >> c >> d
 let a = 2
 let b = 4
 let c = 6
 let d = 8

 :ok
}

Effets de bord et exceptions

Faire un langage fonctionnel pur c'est bien, mais les effets de bords c'est quand même bien pratique parfois.

Une fonction pure c'est une fonction qui, comme en math, retourne toujours le même résultat étant donné les mêmes paramètres. Si f(x) = x + 1, alors f(1) donnera toujours 2.

Les fonctions du style readline() ou get_time() retourneront des résultats différents, ce sont donc des fonctions impures.

En Letlang, ce n'est pas possible de créer de telles fonctions. A la place, on va utiliser les effets. Un effet se déclare comme une signature de fonction :

effect log(level: "debug" | "info", message: string) -> :ok

On peut ensuite appeler cet effet grâce au mot clé perform :

let :ok = perform log("info", "hello world")

Cela permet de déléguer la gestion de l'effet à celui qui appelle le code l'utilisant, cela avec la structure de contrôle do {} :

let :ok = do {
 perform log("info", "hello world")
}
effect log("debug", _message) {
 :ok
}
effect log("info", message) {
 std.print(message)
 :ok
}

Si un effet n'est pas géré par une clause effect, alors il sera propagé jusqu'au runtime de Letlang. Si le runtime ne connait pas l'effet en question, le programme plantera.

Ainsi, le runtime Letlang fournit un ensemble d'effets "builtin" sur lesquels le développeur pourra se reposer pour interagir avec le monde extérieur.

Ensuite, les exceptions sont un cas particulier d'effet : elles ne rendent pas le contrôle au code qui les appelle.

C'est un mécanisme de retour prématuré :

let :oops = do {
 throw :error
 :never_reached
}
catch :error {
 :oops
}

Ensembles infinis

Allez, un dernier pour la route. Letlang peut travailler avec des ensembles infinis, ils sont construit à l'aide d'une variable et d'un prédicat :

s := { x: int | x > 0 }

42 in s # true
-1 in s # false

Ici, le type de s est donc set<int>. C'est important à cause du paradoxe de Russel.

Imaginons 2 secondes que le type set<any> existe (ce qui n'est pas le cas car any n'existe pas).

On pourrait écrire :

s := { x: set<set<any>> | x not in x }

Soit : L'ensemble de tout les ensembles qui ne se contiennent pas eux même.

Posons nous la question suivante : est-ce que s appartient à s ?

	si oui, alors le prédicat x not in x est faux, donc non en fait

	si non, alors le prédicat x not in x est vrai, donc oui en fait

Le simple fait que any n'existe pas nous empêche de créer de tels ensembles. Ouf.

Bravo

Pour ceux qui ont tout lu jusqu'ici, voici une petite récompense :

[image: raclette]

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/9fb0a857b846bb113a20037f764aef3bb62c2d42f5b6d0d614193adb.jpg

EPUB/avatars124053000avatar.jpg
Rl

