

Journal Un irssi (ou autre chose) dans un tmux sur un serveur, avec systemd

Posté par nud le 26 mars 2019 à 22:02.
Licence CC By‑SA.

Étiquettes :

	init

	service

	debian

	systemd

	irssi

	tmux

	irc

[image:]

Sommaire

	

	Comment démarrer irssi dans tmux?

	Avant, avec sysvinit

	
Maintenant: une instance "utilisateur" de systemd
	Créer une unit pour notre service

	Démarrer lors du boot

	Pourquoi c'est cool?

Bonjour Nal,

Cela fait quelques années que j'ai un irssi qui tourne gentiment sur un serveur à moi chez Claude. Il tourne dans un tmux, et pour être sûr de ne rien rater, j'ai toujours fait en sorte que ladite instance tmux soit démarrée automatiquement quand le serveur boote.

Avant, j'avais un script d'init qui faisait ça. Ce script était placé dans /etc/init.d/ et ça marchait. Mais c'était un peu nul parce que les scripts d'init sont globaux et il n'est pas vraiment possible pour un utilisateur d'avoir ses propres scripts d'init sans faire des trucs louches. À la faveur d'une migration vers un nouveau serveur, et vu que ça fait deux versions de Debian qu'on a quand même systemd, je me suis dit que j'allais essayer de "faire ça bien" à la mode systemd.

Je me suis dit que c'était intéressant pour d'autres utilisations aussi, alors je me suis dit que j'allais écrire un petit journal pour la peine. C'est sans doute plein d'inexactitudes et de raccourcis :-)

Comment démarrer irssi dans tmux?

Alors ça, c'est facile:

/usr/bin/tmux new-session -s irc -d /usr/bin/irssi

La commande new-session permet de créer une nouvelle session dédiée, dont le nom est irc. Le paramètre -d permet de détacher immédiatement la session tmux, et ensuite suit la commande à exécuter. Jetez un œil au manuel si vous voulez voir les différentes possibilités offertes, là je reste dans la simplicité :-)

Après, pour me connecter à cette instance, j'utilise un alias qui fait ceci:

alias irc='ssh -t <server> tmux attach-session -t irc'

Et, grosso-modo, ça juste marche, sauf si la machine est redémarrée évidemment.

Avant, avec sysvinit

J'ai déjà dit qu'avec sysvinit, il n'était pas vraiment possible d'avoir un init script défini au niveau de l'utilisateur. Le workaround évident pour quiconque est root sur sa machine, c'est simple, c'est de faire un script d'init traditionnel et de le mettre dans /etc/init.d. Voici donc mon vieux /etc/init.d/tmux-irc:

#!/bin/sh
BEGIN INIT INFO
Provides: tmux-irc
Should-Start: $network
Should-Stop: $network
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
END INIT INFO

set -e

NAME=tmux-irc
DESC="tmux session for IRC"
DAEMONUSER=nud
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

. /lib/lsb/init-functions

start_it_up()
{
 log_daemon_msg "Starting $DESC" "$NAME"
 su $DAEMONUSER -c "/usr/bin/tmux new-session -d -s irc /usr/bin/irssi"
 log_end_msg $?
}

shut_it_down()
{
 log_daemon_msg "Stopping $DESC" "$NAME"
 su $DAEMONUSER -c "/usr/bin/tmux kill-session -t irc"
 log_end_msg $?
}

case "$1" in
 start)
 start_it_up
 ;;
 stop)
 shut_it_down
 ;;
 restart|force-reload)
 shut_it_down
 start_it_up
 ;;
 *)
 echo "Usage: /etc/init.d/$NAME {start|stop|restart|force-reload}" >&2
 exit 2
 ;;
esac

exit 0

C'est du script d'init tout classique, la seule chose inhabituelle est probablement l'appel à su pour exécuter tmux comme utilisateur normal.

Une fois le script d'init en place, il suffit de l'activer à la mode de votre distribution. Ça marche aussi avec systemd, par ailleurs.

Maintenant: une instance "utilisateur" de systemd

Si tout le monde connaît le systemd qui tourne avec le PID 1, au niveau du système, on connait moins le systemd qui tourne avec un PID quelconque, et qui gère les services liés à un utilisateur donné.

C'est quelque chose que j'avais découvert à l'époque ou Gnome envisageait de l'utiliser à la place de gnome-session, et de nos jours, pam-systemd et systemd-logind permettent à systemd d'instancier des slices pour les différents utilisateurs et des scopes pour les différentes sessions. Le wiki de Archlinux contient la documentation la plus complète que j'aie trouvée sur le sujet.

Si vous exécutez systemctl status, vous pourrez retrouver ce type d'info dans l'arborescence:

 ├─user.slice
 │ └─user-1000.slice
 │ ├─user@1000.service
 │ │ ├─tmux-irc.service
 │ │ │ ├─5138 /usr/bin/tmux new-session -d -s irc /usr/bin/irssi
 │ │ │ └─5139 /usr/bin/irssi
 │ │ └─init.scope
 │ │ ├─18920 /lib/systemd/systemd --user
 │ │ └─18921 (sd-pam)

C'est relativement anodin au jour le jour (le plus souvent ça permet de s'assurer que rien ne subsiste une fois qu'un utilisateur se délogue), mais via ce mécanisme, systemd permet aussi à certains utilisateurs de fournir leurs propres units. C'est cela que nous allons utiliser pour notre session tmux.

Créer une unit pour notre service

Il est possible de placer les units propres à un utilisateur dans le dossier ~/.config/systemd/user/. Voici donc mon unit tmux-irc.service (un peu simpliste mais suffisante):

[Unit]
Description=tmux instance with irssi running in it.

[Service]
ExecStart=/usr/bin/tmux new-session -d -s irc /usr/bin/irssi
Type=forking
Restart=always

[Install]
WantedBy=default.target

Une fois ce fichier placé au bon endroit, il suffit de reloader systemd puis on peut démarrer le service:

$ systemctl --user daemon-reload
$ systemctl start --user tmux-irc
$ systemctl status --user tmux-irc

Par contre si vous rebootez la machine, ça ne marche pas. En fait, l'instance utilisateur de systemd n'est créée que lorsqu'un utilisateur se logue. Donc, pour le coté "présence constante", ça n'est pas suffisant.

Note: Théoriquement, il me semble tmux devrait également être arrêté lors du log-out mais ce n'est pas le cas, en tout cas sous Debian. Je n'ai pas creusé mais quelqu'un a peut-être l'explication.

Démarrer lors du boot

La configuration par défaut de systemd-logind est conçue afin de s'assurer que les processus lancés par un utilisateur ne lui survivent pas. Du coup, cette instance est lancée lors du login, et coupée lors du log out de toutes les sessions de l'utilisateur (une seule instance est lancée même si vous vous connectez 5 fois à la machine). Par ailleurs, si votre session tmux est tuée à chaque fois que vous vous déloguez de votre serveur SSH, c'est à cause de ça.

Evidemment, ce n'est pas ce que l'on recherche ici, mais heureusement il est possible de dire à systemd que l'instance d'un utilisateur soit tout le temps présente, du boot au shutdown, ce qui permet d'avoir des processus (services) utilisateurs qui tournent sans avoir de session ouverte.

Il suffit de faire ceci (en root):

loginctl enable-linger $user

Voilà. Rebootez la machine pour en avoir le cœur net. Ça marche :-)

Pourquoi c'est cool?

	vous pourrez encourager le petit dernier à créer son appli web sans lui donner les droits root, et ça c'est cool.

	vous pourrez utiliser tmux dans irssi (ou est-ce l'inverse?) et ça c'est cool.

	vous pourrez faire ce que vous voulez avec ça et ça c'est cool.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars618035000avatar.jpg

