

Journal Mise à jour du firmware d’un Lenovo Thinkpad moderne…

Posté par Pinaraf le 01 août 2017 à 21:53.
Licence CC By‑SA.

Étiquettes :

	thinkpad

	sécurité

	debian

	selinux

	uefi

	firmware

[image:]

Sommaire

	1er firmware : le microcode du processeur

	
2e firmware : l’UEFI d’un Thinkpad X270
	Aller chercher les fichiers

	Démarrer le bon fichier…

Bonsoir nal,

Il y a quelques semaines, je fus victime d’un odieux larcin, mon PC portable pro a été dérobé (cher voleur, tu peux faire un git push de mes devs ferroviaires ?). Donc nouveau PC portable pro, installation de Debian, et toute la phase rigolote de sécurisation de la machine.

Je vous passe l’installation de Debian (LUKS, SELinux, nftables…), on va se concentrer ici sur les firmwares.

1er firmware : le microcode du processeur

Comme vous le savez peut‐être, les processeurs x86 ne parlent plus directement x86 dans le silicium, mais utilisent un microcode, avec une couche de traduction des instructions, un ordonnanceur pour l’exploitation efficace des différentes parties du processeur, tout un bazar pour la gestion de l’énergie… Et tout ça, c’est un logiciel, le microcode, qu’il convient de mettre à jour pour corriger des bogues ou des failles de sécurité (trouver un lien).

Sous Debian, cette étape est facile : apt install intel-microcode puis un redémarrage, il met à jour le microcode et on n’en parle plus.

Donc passons à la partie rigolote : l’UEFI…

2e firmware : l’UEFI d’un Thinkpad X270

Historiquement, la mise à jour d’un BIOS non EFI imposait de passer par un DOS pour mettre à jour la puce. C’était pénible, il fallait trouver un Freedos et l’amorcer… Avec l’UEFI, c’est supposé devenir plus simple, avec un binaire EFI à démarrer ou, mieux encore, l’utilisation du nouveau protocole qui permet au système d’exploitation d’envoyer un blob à l’UEFI pour une application au prochain redémarrage. Ce nouveau protocole est encore très expérimental, donc j’ai choisi de l’ignorer et de rester sur la méthode « old school ».

Donc, direction le site de Lenovo, je saisis le modèle du PC portable (X270 20HN), je vais dans les téléchargements, section BIOS/UEFI, et là deux choix : un binaire Windows ou une ISO de CD amorçable. Bon, le binaire Windows, on va pas essayer, prenons l’ISO. La machine n’a pas de lecteur de CD (ça serait physiquement impossible), donc cela doit être comme une ISO de distribution GNU/Linux et être « universel ».

Aller chercher les fichiers

Je télécharge le fichier ISO, je fais un file dessus et, surprise !

snoopy@peanuts2:~/Downloads$ file r0iuj11wd.iso
r0iuj11wd.iso: ISO 9660 CD-ROM filesystem data 'R0IET40W' (bootable)

Où est la surprise ? Un disque « universel » sera identifié avec un secteur d’amorçage DOS/MBR comme suit :

snoopy@peanuts2:~/Downloads$ file debian-9.0.0-i386-xfce-CD-1.iso
debian-9.0.0-i386-xfce-CD-1.iso: DOS/MBR boot sector; partition 2 : ID=0xef, start-CHS (0x3ff,254,63), end-CHS (0x3ff,254,63), startsector 6908, 608 sectors

Peut‐être est‐ce un CD amorçable moderne avec des fichiers EFI alors ?

$ find /mnt/disc/
/mnt/disc/

Que de quoi ? J’ai une ISO de 21 Mio vide ?

Pour comprendre un peu ce qu’il se passe, plongeons dans les années 90. Pour rendre un CD amorçable à l’époque, il a été décidé de mettre dans une sorte de piste à part dans l’ISO d’une image de disque qui, elle, sera démarrée par le BIOS. Il s’agit de l’extension El Torito. Mais où se cache donc cette image disque dans l’ISO ? Demandons à isoinfo :

$ isoinfo -d -i r0iuj11wd.iso
CD-ROM is in ISO 9660 format
System id:
Volume id: R0IET40W
Volume set id:
Publisher id:
Data preparer id:
Application id: NERO BURNING ROM VER 12,5,5,0
Copyright File id:
Abstract File id:
Bibliographic File id:
Volume set size is: 1
Volume set sequence number is: 1
Logical block size is: 2048
Volume size is: 10934
El Torito VD version 1 found, boot catalog is in sector 20
Joliet with UCS level 3 found
NO Rock Ridge present
Eltorito validation header:
 Hid 1
 Arch 0 (x86)
 ID 'NERO BURNING ROM VER 12'
 Key 55 AA
 Eltorito defaultboot header:
 Bootid 88 (bootable)
 Boot media 4 (Hard Disk Emulation)
 Load segment 7C0
 Sys type 6
 Nsect 1
 Bootoff 1B 27

Voilà, là, on commence à avoir des informations. Une ISO est constituée de secteurs de 2 048 octets, et isoinfo nous dit que le décalage de l’image d’amorçage est 0x1B, soit 27.

Donc, demandons à notre ami dd :

$ dd if=r0iuj11wd.iso of=boot.img skip=27 bs=2048
10907+0 records in
10907+0 records out
22337536 bytes (22 MB, 21 MiB) copied, 0.0174814 s, 1.3 GB/s
$ file boot.img
boot.img: DOS/MBR boot sector; partition 1 : ID=0x4, active, start-CHS (0x0,1,1), end-CHS (0x14,63,32), startsector 32, 42976 sectors

Ah, ben voilà qui est mieux. On a une table de partition DOS, on pourrait la copier sur une clé USB et la démarrer. Ou avoir la flemme d’aller chercher une clé USB. Continuons donc.

$ /sbin/fdisk -l boot.img
Disk boot.img: 21.3 MiB, 22337536 bytes, 43628 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x00000000

Device Boot Start End Sectors Size Id Type
boot.img1 * 32 43007 42976 21M 4 FAT16 <32M

On a une partition, donc on peut l’extraire…

$ dd if=boot.img of=boot_inner.img skip=32 bs=512
43596+0 records in
43596+0 records out
22321152 bytes (22 MB, 21 MiB) copied, 0.0442729 s, 504 MB/s
$ file boot_inner.img
boot_inner.img: DOS/MBR boot sector, code offset 0x3c+2, OEM-ID "MSDOS5.0", reserved sectors 2, root entries 512, sectors 40960 (volumes <=32 MB) , Media descriptor 0xf8, sectors/FAT 159, sectors/track 32, heads 64, hidden sectors 32, serial number 0x3a1aeaaa, unlabeled, FAT (16 bit)

Parfait, on a une image que l’on peut monter… Que contient‐elle ?

$ tree .
├── EFI
│ └── BOOT
│ └── BootX64.efi
├── Flash
│ ├── 406E3.PAT
│ ├── 406E8.PAT
│ ├── 506E8.PAT
│ ├── 806E9.PAT
│ ├── BCP.evs
│ ├── BootX64.efi
│ ├── NoDCCheck_BootX64.efi
│ ├── R0IET40W
│ │ ├── $0AR0I00.FL1
│ │ └── $0AR0I00.FL2
│ ├── README.TXT
│ └── SHELLFLASH.EFI
└── System Volume Information
 ├── IndexerVolumeGuid
 └── WPSettings.dat

Démarrer le bon fichier…

Le fichier EFI/BOOT/BootX64.efi est le fichier cherché par défaut par l’UEFI sur un disque. Très bien. On note qu’il est identique au fichier Flash/BootX64.efi.

Copions le dossier Flash dans la partition /boot/efi, redémarrons et passons sur la console GRUB…

Dans GRUB, j’exécute donc les commandes suivantes (et vive la complétion) :

set root='(hd0,gpt1)'
chainloader /Flash/BootX64.efi
boot

Et l’outil de mise à jour de Lenovo se lance, victoire !

À noter pour les plus joueurs : a priori, les fichiers .PAT, .FL1 et .FL2 devraient pouvoir être envoyés dans le firmware par le protocole de mise à jour UEFI, mais… je n’ai pas envie de cramer ma machine pro, donc je n’essaye pas pour le moment…

Amusez bien tout le monde, et n’oubliez pas vos mises à jour ! Dans le lot, j’ai quand même eu des mises à jour de l’Intel ME (qui a connu des failles critiques cette année), des correctifs pour l’UEFI qui pouvait fuiter son mot de passe au démarrage… Bref, que du bonheur.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

