

Un nouveau moteur de rendu ultra‐rapide pour Firefox : Quantum Render

Posté par _jordan_ le 16 novembre 2017 à 20:13.
Édité par fengalin, Adrien Dorsaz, Davy Defaud, ZeroHeure, skone, jcr83, palm123, claudex, DontShootMe, esdeem, _PhiX_, Thomas Debesse et Ontologia.
Modéré par Pierre Jarillon.
Licence CC By‑SA.

Étiquettes :

	mozilla

	firefox

	quantum

	webrender

[image: Mozilla]

Après l’excellent article de cet été sur le nouvel interpréteur de Firefox, Lin Clark récidive pour nous parler du moteur de rendu qui sera utilisé dans les futures versions de votre navigateur favori.

Le précédent article ayant particulièrement plu et ayant été repris sur le blog de Mozfr, nous vous proposons une traduction dans la suite de cette dépêche.

[image: Dessin d’un moteur d’avion détaillé avec les différentes parties du projet Quantum]

Veuillez noter que l’article original est sous licence Creative Common Attribution - Partage dans les mêmes conditions 3.0 non transposé, cette dépêche suit donc les mêmes règles.

Sommaire

	Que fait un moteur de rendu ?

	
Une brève histoire du coloriage et de la composition
	Introduction aux calques et à la composition

	La composition accélérée par les processeurs graphiques

	Le coloriage accéléré par les processeurs graphiques

	À quel moment les navigateurs actuels deviennent‐ils médiocres ?

	Utilisation du processeur graphique comme un moteur de jeu vidéo

	
Comment WebRender fonctionne avec le processeur graphique
	Supprimer les formes inutiles de la liste (early culling ou « élagage précoce »)

	Minimiser le nombre de textures intermédiaires (l’arbre de tâches de rendu)

	Regrouper les appels (batching)

	Réduction des pixels shading avec des passes d’opacité et de transparence (Z‐culling)

	… Et nous sommes prêts à dessiner !

	Attention : tout n’est pas encore sur le processeur graphique

	Quel futur pour WebRender ?

La publication de Firefox Quantum approche. Elle apporte plusieurs améliorations de performance dont le moteur CSS très rapide que nous avons repris de Servo.

Une autre brique importante de la technologie de Servo n’est pas encore intégrée à Firefox Quantum, même s’il est prévu qu’elle le soit rapidement. Il s’agit de WebRender, qui sera ajouté à Firefox dans le cadre du projet Quantum Render.

[image: Dessin d’un moteur d’avion détaillé avec les différents parties du projet Quantum]

Le moteur de rendu WebRender est connu pour être extrêmement rapide. Cependant, l’objectif de WebRender n’est pas vraiment de faire en sorte que le rendu soit plus rapide, mais plutôt qu’il soit plus fluide.

Avec WebRender, nous voulons que les applications tournent de façon fluide et lisse à 60 images par seconde ou plus (Frame Per Second : FPS) et ceci indépendamment de la taille de l’écran ou du nombre de changements sur la page d’une image à l’autre. Et ça fonctionne. Les pages qui se chargent péniblement à 15 FPS sur Chrome ou sur la version actuelle de Firefox tournent à 60 FPS avec WebRender.

Comment WebRender y parvient‐il ? Il change fondamentalement la manière dont le moteur de rendu fonctionne pour le rapprocher davantage d’un moteur de jeu 3D.

Voyons ce que ça signifie. Mais d’abord…

Que fait un moteur de rendu ?

Dans l’article à propos de Stylo, j’ai expliqué le processus par lequel le navigateur passe du HTML et du CSS aux pixels à l’écran et comment la plupart des navigateurs le font en cinq étapes.

On peut diviser ces 5 étapes en deux parties. Au cours de la première partie, on construit un plan. Pour créer ce plan, on combine le HTML et le CSS avec des informations comme la taille du cadre de rendu afin de savoir exactement ce à quoi chaque élément doit ressembler — sa largeur, sa hauteur, sa couleur, etc. Le résultat final est appelé un arbre d’image (frame tree) ou un arbre de rendu (render tree).

La seconde partie — peindre et composer — est de la responsabilité du moteur de rendu. Il prend le plan de la première partie et le transforme en pixels à afficher à l’écran.

[image: Schéma séparant les 5 étapes d’un rendu en 2 groupes, avec un arbre de rendu à passer entre les 2 parties]

Mais le navigateur ne doit pas seulement faire cela une fois par page. Il doit le refaire encore et encore pour la même page. À chaque fois que quelque chose change sur cette page — par exemple lorsqu’une div s’ouvre — le navigateur doit passer à nouveau par un grand nombre de ces étapes.

[image: Schéma montrant les étapes à refaire lors d’un clic : styliser, former, peindre et composer]

Même dans les cas où rien ne change vraiment sur la page — par exemple, lorsque vous la faites défiler ou lorsque vous surlignez du texte — le navigateur doit quand même au moins repasser par la seconde partie pour dessiner les nouveaux pixels à l’écran.

[image: Schéma montrant les étapes à refaire lors d’un défilement : composer]

Si vous voulez que les choses telles que le défilement ou les animations soient fluides, elles doivent se produire à 60 images par seconde.

Vous avez peut‐être déjà entendu cette expression — images par seconde (FPS ou IPS en français) — sans être sûr de ce que ça signifie. Je me le représente comme un livre animé. C’est comme un livre classique avec des images, mais quand vous faites défiler rapidement les pages avec votre pouce, vous verrez que les pages forment une scène animée.

Pour que l’animation paraisse fluide, il vous faut 60 pages pour chaque seconde d’animation.

[image: Photo d’un livre animé avec une scène animée fluide à côté]

Les pages de ce livre animé sont faites avec un papier quadrillé. Il y a de très très nombreux petits carrés, et chacun de ces carrés ne peut contenir qu’une seule couleur.

Le rôle du moteur de rendu est de remplir les cases du papier quadrillé. Une fois que toutes les cases ont été remplies, le rendu de l’image est terminé.

Évidemment, il n’y a pas de papier à petits carreaux dans votre ordinateur. En revanche, il y existe une partie de la mémoire de l’ordinateur appelée le tampon de trame, plus connu sous le terme anglais de frame buffer. Chaque adresse mémoire dans le frame buffer est comme une case du papier quadrillé… elle correspond à un pixel à l’écran. Le navigateur remplit chaque emplacement avec les valeurs RVBA (rouge, vert, bleu et alpha — la transparence) qui correspondent à la couleur attendue.

[image: Un ensemble d’adresses mémoire avec des valeurs RVBA associées aux carrés d’une grille (pixels)]

Quand l’écran a besoin de s’actualiser, il se réfère à cette partie de la mémoire.

La plupart des écrans s’actualisent 60 fois par seconde. C’est pour ça que les navigateurs essayent d’assurer le rendu des pages à 60 images par seconde. Ainsi, le navigateur dispose de 16,67 millisecondes pour tout préparer — appliquer les styles CSS, positionner les éléments, peindre — et remplir toutes les cases du frame buffer avec les couleurs des pixels. Cette durée entre deux images (16,67 ms) est appelée le frame budget (budget de l’image).

Parfois vous entendez des personnes parler de dropped frame (trame perdue). Ce phénomène se produit quand le système n’a pas terminé son travail dans le frame budget imparti. L’écran essaye de récupérer la nouvelle image du frame buffer avant que le navigateur ait fini de tout remplir. Dans ce cas, l’écran affiche l’ancienne version de l’image à nouveau.

Un dropped frame c’est un peu comme si vous arrachiez une page du livre animé. Cela donnerait l’impression que l’animation bégaye ou saute parce que la transition entre la page précédente et la suivante manque.

[image: Picture of a flipbook missing a page with a janky animation next to it]

Donc nous voulons être sûrs de disposer de tous ces pixels dans le frame buffer avant que l’écran ne vienne récupérer la nouvelle image. Regardons comment, historiquement, les navigateurs faisaient cela et comment ça a changé au cours du temps. Puis nous verrons comment rendre cela plus rapide.

Une brève histoire du coloriage et de la composition

Note : Le coloriage et la composition sont les tâches qui différencient le plus les moteurs de rendu de chaque navigateur. Les navigateurs développés pour une seule plate‐forme (comme Edge et Safari) fonctionnent un peu différemment des navigateurs multiplates‐formes (comme Firefox et Chrome).

Les premiers navigateurs comportaient déjà des optimisations permettant d’obtenir un rendu des pages plus rapide. Par exemple, si vous étiez en train de faire défiler le contenu, le navigateur gardait la partie encore visible et la déplaçait. Ensuite, il coloriait les nouveaux pixels dans l’espace blanc restant.

Ce processus qui consiste à identifier ce qui a changé pour modifier seulement ces éléments ou pixels est appelé invalidation.

Au cours du temps, les navigateurs ont commencé à appliquer de plus en plus de techniques d’invalidation, comme le rectangle d’invalidation. Avec le rectangle d’invalidation, vous identifiez la plus petite partie rectangulaire autour de chaque partie de l’écran qui a changé. Puis, vous redessinez seulement ce qui se trouve à l’intérieur de ces rectangles.

Ça réduit fortement la charge de travail lorsqu’il y a peu de changements sur la page… par exemple, lorsque vous avez un simple curseur clignotant :
[image: Curseur clignotant avec un petit rectangle repeint autour de lui]

Mais ça n’est pas d’une grande aide lorsque de grandes parties de la page doivent être modifiées. Donc, les navigateurs ont imaginé de nouvelles techniques pour traiter ces cas.

Introduction aux calques et à la composition

Utiliser des calques peut être utile lorsque de grandes parties de la page changent… Du moins, dans certains cas.

Les calques des navigateurs ressemblent beaucoup aux calques de Photoshop, ou aux papiers calques utilisés dans l’animation traditionnelle à la main (la technique est nommée onion skinning car ces papiers ressemblent à des pelures d’oignons par leur couleur et leur transparence). En gros, vous dessinez différents éléments de la page sur différents calques. Puis, vous placez ces calques les uns au‐dessus des autres.

Les navigateurs utilisent des calques depuis déjà longtemps, mais ils n’ont pas toujours été utilisés à des fins d’accélération. Au départ, ils permettaient seulement de s’assurer que le rendu était correct. Ils intervenaient dans le cadre des contextes d’empilement (stacking contexts).

Par exemple, si une page comportait un élément partiellement transparent, il était placé dans son propre contexte d’empilement. Cela signifie qu’il disposait de son propre calque pour pouvoir mélanger sa couleur avec la couleur en dessous. Ces calques étaient jetés dès que l’image était prête. À la prochaine image, tous les calques étaient dessinés à nouveau.

[image: Calques pour l’opacité crées, puis images rendues et enfin tout est jeté]

Mais souvent, les objets de ces calques ne changeaient pas d’une image à l’autre. Par exemple, pensez à une animation traditionnelle. L’arrière‐plan ne change pas, même si les personnages bougent au premier plan. Il est bien plus efficace de garder le calque d’arrière‐plan à portée de main et de le réutiliser au moment voulu.

Les navigateurs se sont donc mis à conserver les calques. Ils n’avaient plus qu’à redessiner les calques qui changeaient ensuite. Et dans certaines situations, les calques ne changeaient même pas. Il fallait juste les réorganiser — par exemple, quand une animation bougeait sur l’écran ou que quelque chose défilait.

[image: Deux calques bougent l’un relativement à l’autre comme une boîte de défilement est défilée]

Le processus consistant à réarranger les calques est appelé composition. Le compositeur part de ceci :

	des images (bitmaps) sources : l’arrière‐plan (avec un rectangle vide à l’emplacement où le contenu défilant devra apparaître) et le contenu défilant lui‐même ;

	une image de destination, qui sera affichée à l’écran.

D’abord, le compositeur copie l’arrière‐plan dans l’image de destination.

Ensuite, il identifie quelle partie du contenu défilant doit être affichée. Il copie cette partie dans l’image de destination.

[image: Source bitmaps on the left, destination bitmap on the right]

Ce procédé décharge le fil d’exécution principal d’un certain nombre de dessins, mais il passe encore beaucoup de temps à la composition. Et beaucoup de choses se disputent le temps du fil d’exécution principal.

J’ai déjà parlé de cela : le fil d’exécution principal est comme un développeur full‐stack. Il est en charge du DOM, de l’agencement et du JavaScript. Et il était aussi en charge du coloriage et de la composition.

[image: Fil d’exécution principal faisant du DOM, JS, agencement, coloriage et de la composition]

Chaque milliseconde que le fil d’exécution principal passe au coloriage et à la composition est du temps qu’il ne peut pas dédier au JavaScript ou à l’agencement de la page.

[image: Processeur travaillant sur le coloriage et pensant « Je devrais vraiment me mettre à ce JavaScript bientôt »]

Mais un autre composant matériel de l’ordinateur passait beaucoup de temps inactif et ce composant a été précisément conçu pour gérer les graphismes. C’est le processeur graphique (GPU — Graphics Processing Unit), que les jeux vidéo utilisent depuis les années 90 pour assurer un rendu rapide des images. Et depuis, les processeurs graphiques sont devenus de plus en plus gros et de plus en plus puissants.

[image: Schéma d’un chipset d’ordinateur avec processeur quadricœurs et un processeur graphique]

La composition accélérée par les processeurs graphiques

Donc les développeurs de navigateurs ont commencé à migrer certaines tâches vers le processeur graphique.

Il y a deux tâches qui peuvent potentiellement migrer vers le processeur graphique :

	colorier les calques ;

	composer les calques ensemble.

Il est parfois difficile de migrer le coloriage sur le processeur graphique. Donc, dans la majeure partie des cas, les navigateurs multiplates‐formes ont conservé le coloriage sur le processeur.

Mais la composition est quelque chose que les processeurs graphiques peuvent faire très rapidement, et c’était facile de la basculer vers le processeur graphique.

[image: Fil d’exécution principal faisant passer les calques au processeur graphique]

Certains navigateurs ont poussé ce parallélisme encore plus loin en ajoutant un fil d’exécution de composition sur le processeur. Il est devenu le gestionnaire du travail de composition qui a lieu sur le processeur graphique. Cela signifie que si le fil d’exécution principal est occupé (par exemple à exécuter du JavaScript), le fil d’exécution de composition peut quand même s’occuper des actions déclenchées par l’utilisateur, comme par exemple faire défiler le contenu de la page.

[image: Fil d’exécution de composition placé entre le fil d’exécution principal et le processeur graphique, il est en train de passer les calques au processeur graphique]

Cette stratégie déplace donc tout le travail de composition en dehors du fil d’exécution principal. Mais elle impose encore beaucoup de travail au fil d’exécution principal. Chaque fois qu’un calque doit être recolorié, le fil d’exécution principal doit s’en charger, avant de transférer le calque au processeur graphique.

Certains navigateurs ont déplacé le coloriage sur un autre fil d’exécution (et nous sommes en train de travailler là‐dessus actuellement dans Firefox). Mais il est encore plus rapide de déplacer cette dernière petite tâche — le coloriage — dans le processeur graphique.

Le coloriage accéléré par les processeurs graphiques

Donc, les navigateurs ont également commencé à déplacer le coloriage sur le processeur graphique.
[image: Coloriage et composition gérés par le processeur graphique]

Les navigateurs sont encore en train d’accomplir ce basculement. Certains navigateurs colorient sur le processeur graphique systématiquement, quand d’autres ne le font que sur certaines plates‐formes (par exemple, uniquement sur Windows ou uniquement sur les appareils mobiles).

Le coloriage sur le processeur graphique apporte plusieurs avantages. Il libère le processeur pour qu’il puisse utiliser son temps à autre chose, comme exécuter le JavaScript et réaliser l’agencement. En outre, les processeurs graphiques sont bien plus rapides que les processeurs centraux pour dessiner des pixels, donc ils accélèrent aussi le coloriage. Cela entraîne aussi moins de données à copier du processeur central au processeur graphique.

Mais, le fait de maintenir une séparation entre le coloriage et la composition présente encore un coût, même lorsqu’ils sont tous les deux exécutés sur le processeur graphique. Cette séparation limite aussi le type d’optimisations envisageables pour rendre le travail du processeur graphique encore plus rapide.

C’est ici que WebRender entre en scène. Il change fondamentalement la manière dont nous effectuons le rendu, en supprimant la séparation entre le coloriage et la composition. Il nous offre la possibilité d’adapter les performances de notre moteur de rendu afin de vous proposer la meilleure expérience utilisateur du Web actuel et afin de mieux gérer les cas d’utilisations du Web de demain.

Cela signifie que nous ne voulons pas simplement assurer un rendu plus rapide des trames… Nous visons également un rendu plus régulier et sans défauts. Et même lorsqu’il y a beaucoup de pixels à dessiner, comme c’est le cas pour les écrans 4K ou les casques de réalité virtuelle WebVR, nous voulons que l’expérience reste toujours aussi fluide.

À quel moment les navigateurs actuels deviennent‐ils médiocres ?

Les optimisations ci‐dessus permettent déjà d’accélérer le rendu des pages dans certains cas. Lorsque peu de choses changent sur une page — par exemple, lorsqu’il n’y a qu’un simple curseur clignotant — le navigateur va pouvoir se concentrer sur ce qui est strictement nécessaire.
[image: Curseur clignotant avec un petit rectangle recolorié autour de lui]

En divisant les pages en calques, on a augmenté le nombre de scénarios parfaits. Si vous pouvez dessiner un nombre limité de calques et vous contenter de les déplacer les uns par rapport aux autres, alors l’architecture coloriage‐composition fonctionne bien.

[image: L’aiguille d’une horloge est traitée comme un calque au‐dessus du reste]

Mais l’utilisation des calques a aussi un coût. Ces derniers occupent beaucoup de mémoire et peuvent même ralentir les choses. Les navigateurs doivent combiner les calques lorsque cela a du sens… Mais il est compliqué de déterminer quand cela a du sens.

Cela signifie que s’il y a beaucoup de choses différentes qui bougent sur la page, vous pouvez vous retrouver avec beaucoup trop de calques. Ces calques remplissent la mémoire et mettent trop de temps à être transférés au compositeur.

[image: Many layers on top of each other]

Inversement, il arrive de se retrouver avec un seul calque alors qu’il aurait été plus efficace d’en utiliser plusieurs. Ce calque unique va être constamment redessiné et transféré au compositeur, qui va alors lancer la composition sans rien changer.

Cela signifie que vous doublez le nombre de coloriages en repassant sur chaque pixel deux fois sans jamais en tirer de bénéfice. Il aurait été plus rapide d’effectuer le rendu directement, sans passer par la phase de composition.

[image: Paint and composite producing the same bitmap]

Et il y a de nombreux cas où les calques n’aident pas vraiment. Par exemple, si vous animez la couleur d’arrière‐plan, de toute façon, la totalité du calque doit être recoloriée. Ces calques ne sont utiles que pour un nombre restreint de propriétés CSS.

Même si la plupart de vos trames sont des scénarios parfaits — c’est‐à‐dire qu’elles consomment un minimum de frame budget — vous pouvez quand même vous retrouver avec une animation chaotique. Pour arriver à des défauts perceptibles, il suffit de quelques trames qui tombent dans les pires scénarios.

[image: Lige du temps des frames avec quelques frames dépassant leur frame buget, causant des imperfections]

Ces scénarios sont appelés falaises de performance. Votre application semble se dérouler correctement jusqu’à ce qu’elle se heurte à ces pires scénarios (comme animer la couleur d’arrière‐plan) et tout à coup votre taux de trames s’effondre depuis le bord de la falaise.

[image: Person falling over the edge of a cliff labeled animating background color]

Mais nous pouvons nous débarrasser de ces falaises de performance.

Comment faisons‐nous cela ? Nous suivons la voie des moteurs de rendu 3D des jeux vidéo.

Utilisation du processeur graphique comme un moteur de jeu vidéo

Et si l’on arrêtait d’essayer de deviner de quel calque nous avons besoin ? Et si l’on supprimait les frontières entre le coloriage et la composition et que l’on revenait au coloriage de chaque pixel à chaque image ?

Cette idée peut sembler ridicule, mais en fait, ce n’est pas la première fois qu’elle est considérée. Les jeux vidéo modernes repeignent chaque pixel et ils soutiennent 60 images par seconde avec plus de fiabilité que les navigateurs Web. Ils le font d’une façon surprenante… Au lieu de créer ces rectangles d’invalidation et ces calques pour minimiser ce qui doit être colorié, ils colorient simplement la totalité de l’écran.

Ce mode de rendu ne serait‐il pas beaucoup plus lent ?

Si l’on coloriait avec le processeur, ça le serait. Mais les processeurs graphiques sont conçus pour ça.

Les processeur graphique sont conçu pour l’extrême parallélisation. J’ai parlé de parallélisme dans mon dernier article sur Stylo. Avec le parallélisme, la machine peut faire plusieurs choses à la fois. Le nombre de choses qu’elle peut faire en même temps est limité par le nombre de cœurs qu’elle possède.

Les processeurs disposent habituellement de deux à huit cœurs. Pour les processeurs graphiques, on parle d’au minimum une petite centaine de cœurs et souvent de plus de mille cœurs.

Cependant, ces cœurs fonctionnent un peu différemment. Ils ne peuvent pas travailler complètement indépendamment comme c’est le cas pour les cœurs de processeur. Au lieu de cela, ils travaillent ensemble sur la même tâche, en exécutant la même instruction sur des données différentes.

[image: Des cœurs de processeurs travaillant indépendamment, des cœurs de processeur graphique travaillant ensemble]

C’est exactement ce dont vous avez besoin lorsque vous remplissez des pixels. Chaque pixel peut être rempli par un cœur différent. Et comme le travail peut être effectué sur des centaines de pixels en même temps, le processeur graphique est bien plus rapide pour remplir les pixels que le processeur… Mais seulement si vous vous assurez que tous ces cœurs ont du travail à faire.

Comme les cœurs doivent travailler sur les mêmes choses en même temps, les processeurs graphiques suivent une liste d’étapes plutôt rigide et leurs API sont assez contraintes. Jetons un œil à leur fonctionnement.

Premièrement, vous devez dire au processeur graphique ce qui doit être dessiné : quelles formes doivent être tracées et comment les remplir.

Pour cela, vous divisez votre dessin en formes simples (en général des triangles). Ces formes sont placées dans un espace en 3D, donc certaines formes peuvent apparaître derrière d’autres formes. Puis vous prenez les coins de ces triangles et vous placez les coordonnées x, y, z dans un tableau.

[image: Graphe en 3D représentant un triangle avec une matrice de coordonnées sur le côté]

Puis vous lancez une demande de dessin — vous dites au processeur graphique de dessiner ces formes.

[image: Processeur en train de passer les coordonnées d’un triangle au processeur graphique]

À partir de là, le processeur graphique prend le relais. Tous les cœurs vont travailler sur la même chose au même moment. Ils vont :

	identifier l’emplacement des coins de ces formes ; ça s’appelle le vertex shading (ombrage de sommet) :
[image: Cœurs de processeur graphique dessinant les sommets sur un graphique]

	identifier les lignes de jonction de ces coins ; à partir de ce moment, vous pouvez déterminer quels pixels sont couverts par la forme, ça s’appelle la rastérisation ou matricialisation :
[image: Cœurs de processeur graphique dessinant les lignes entre les coins]

	maintenant que l’on sait quels pixels sont couverts par une forme, on parcourt chaque pixel de la forme et on identifie la couleur qu’il doit afficher, on appelle cela le pixel shading.
[image: Cœurs de processeur graphique remplissant les pixels]

Cette dernière étape peut être réalisée de différentes manières. Pour dire au processeur graphique comment il doit s’y prendre, vous lui donnez un programme appelé pixel shader. Le pixel shading est une des seules parties du processeur graphique que vous pouvez programmer.

Certains pixel shaders sont simples. Par exemple, si vous dessinez une forme d’une seule couleur, alors votre pixel shader a juste besoin de retourner cette couleur pour chaque pixel de la forme.

D’autres fois, c’est plus compliqué, comme lorsque vous utilisez une image de fond. Vous devez identifier quelle partie de l’image correspond à chaque pixel. Vous pouvez faire cela de la même manière qu’un artiste agrandit ou rétrécit une image… Posez une grille correspondant à chaque pixel au‐dessus de l’image. Puis, lorsque vous savez quelle case correspond à quel pixel, prenez des échantillons des couleurs à l’intérieur de la case et déterminez la couleur à retenir pour le pixel cible. On appelle cette technique le texture mapping parce qu’elle établit une correspondance entre l’image (appelée texture) et les pixels.

[image: Image haute résolution reliée à un espace avec une résolution beaucoup plus basse]

Le processeur graphique va appeler votre programme de pixel shader pour chaque pixel. Différents cœurs vont travailler sur différents pixels au même moment et en parallèle, mais ils doivent tous utiliser le même programme de pixel shader. Lorsque vous demandez au processeur graphique de dessiner vos formes, vous lui dites quel pixel shader utiliser.

Pour la plupart des pages Web, différentes parties de la page vont nécessiter différents pixel shaders.

Et comme le shader s’applique à toutes les formes avec lesquelles vous l’appelez, vous avez souvent besoin de diviser vos requêtes de dessin en plusieurs groupes. On appelle cela des batches (lots). Pour utiliser au maximum les cœurs disponibles, il vaut mieux créer un minimum de batches avec beaucoup de formes à l’intérieur.

[image: Processeur faisant passer au processeur graphique une boîte contenant beaucoup de coordonnées et un pixel shader]

C’est donc comme cela que le processeur graphique divise le travail entre des centaines ou des milliers de cœurs. Et c’est seulement grâce à cette extrême parallélisation que l’on peut envisager un rendu complet à chaque image. Cependant, même avec le parallélisme extrême, cela reste un gros travail. Vous devez encore le faire de manière intelligente. Et c’est là que WebRender entre en scène…

Comment WebRender fonctionne avec le processeur graphique

Revenons en arrière pour examiner les étapes par lesquelles le navigateur passe pour réaliser le rendu des pages. Deux choses vont changer ici :

	il n’y a plus de séparation entre le coloriage et la composition, ils font tous deux partie de la même étape ; le processeur graphique les effectue en même temps en s’appuyant sur les commandes qui lui sont envoyées et qui utilisent l’API graphique ;

	l’agencement nous donne maintenant une structure différente pour le rendu ; avant, c’était ce que l’on appelait l’arbre d’image ou « frame tree » (ou arbre de rendu, render tree, dans Chrome), maintenant, il passe une liste d’affichage.

[image: Schéma montrant les étapes du pipeline de rendu avec deux changements. Le _frame tree_ est maintenant une liste d’affichage et le coloriage et la composition ont été combinés dans le Render.]

La liste d’affichage est un ensemble d’instructions de dessin de haut niveau. Elle nous indique ce que nous devons dessiner sans être spécifique à une API graphique.

Lorsqu’il y a quelque chose de nouveau à dessiner, le fil d’exécution principal donne la liste d’affichage au RenderBackend, qui est le code de WebRender qui tourne sur le processeur.

Le travail du RenderBackend consiste à prendre cette liste de fonctions de dessin de haut niveau et à les convertir en fonctions d’appel de dessin dont le processeur graphique a besoin. Ces fonctions sont regroupées par lots (batches) de façon à les exécuter plus rapidement.

[image: Schéma des 4 fils d’exécution, avec le fil d’exécution RenderBacked placé entre le fil d’exécution principal et celui de composition. Le RenderBackend traduit la liste d’affichage en appels de dessin groupés en lot.]

Puis le RenderBackend va passer ces batches au fil d’exécution de composition qui va les passer au processeur graphique.

Le RenderBackend cherche à rendre les directives de dessin qu’il envoie au processeur graphique aussi rapides que possible à exécuter. Pour cela, il utilise quelques techniques.

Supprimer les formes inutiles de la liste (early culling ou « élagage précoce »)

La meilleure manière de gagner du temps est de ne pas avoir à travailler du tout.

Premièrement, le RenderBackend réduit la liste des éléments à afficher. Il identifie quels éléments d’affichage vont apparaître à l’écran. Pour cela, il regarde certaines choses comme jusqu’où descend le défilement de chaque boîte de défilement.

Si au moins une partie de la forme est dans la boîte, alors elle est incluse. En revanche, si aucune partie de la forme ne doit être affichée sur la page, elle est supprimée. Ce processus est appelé early culling (élagage précoce).

[image: Une fenêtre de navigation avec quelques parties en dehors de l’écran. Juste à côté, la liste d’affichage avec les éléments en dehors supprimés.]

Minimiser le nombre de textures intermédiaires (l’arbre de tâches de rendu)

Maintenant nous disposons d’un arbre qui contient seulement les formes que nous allons utiliser. Cet arbre est organisé selon les contextes d’empilement dont nous avons parlé précédemment.

Les effets, comme les filtres CSS et les contextes d’empilements, rendent les choses un peu compliquées. Par exemple, disons qu’un élément a une opacité de 0,5 et qu’il a des enfants. Vous pourriez penser que chaque enfant est transparent… Mais c’est en fait le groupe entier qui est transparent.

[image: Trois boîtes se chevauchant qui sont translucides, affichées alors de manière distincte et à côté d’une forme translucide crées par les trois boîtes où les boîtes ne se distinguent plus.]

À cause de cela, vous devez commencer par faire le rendu du groupe dans une texture avec chaque enfant complètement opaque. Puis, lorsque vous la placez dans son élément parent, vous pouvez changer l’opacité de toute la texture.

Ces contextes d’empilement peuvent être imbriqués… Ce parent peut faire partie d’un autre contexte d’empilement, ce qui signifie qu’il doit être rendu dans une autre texture intermédiaire et ainsi de suite.

Créer l’espace pour ces textures coute cher. Nous voulons les grouper autant que possible dans la même texture intermédiaire.

Pour aider le processeur graphique, nous créons un arbre de tâches de rendu. Avec lui, on sait quelles textures doivent être créées avant quelles autres. Chaque texture qui ne dépend pas d’une autre peut être créée au premier passage, ce qui signifie qu’elles peuvent être regroupées dans la même texture intermédiaire.

Donc dans l’exemple ci‐dessus, on devrait commencer par une passe pour afficher le coin de l’une des ombres de boîtes (c’est légèrement plus compliqué que ça, mais c’est l’essentiel).

[image: Une arbre à 3 niveaux avec une racine suivie d’un enfant contenant l’opacité qui contient lui‐même les trois enfants des boîtes ombrées. À côté de ça, un objectif de rendu avec le coin de l’ombre d’une boîte.]

Dans la seconde passe, on peut répliquer ce coin tout autour de la boîte pour placer l’ombre de boîte sur les boîtes. Puis on peut effectuer le rendu du groupe avec l’opacité maximale.

[image: Le même arbre à trois niveau avec un objectif de rendu avec la forme crées à partir des 3 boîtes et une opacité maximale.]

Puis, tout ce qu’il reste à faire est de changer l’opacité de cette texture et de la placer à l’endroit où elle doit aller dans la texture finale qui doit être affichée à l’écran.

[image: Le même arbre avec l’objectif de destination montrant la forme à 3 boîtes avec l’opacité réduite.]

En construisant cet arbre de tâches de rendu, nous identifions le nombre minimum de rendus cibles hors écran que nous pouvons utiliser. C’est bien parce que, comme mentionné précédemment, réserver de l’espace pour ces rendus de texture cible est couteux.

Ça aide aussi à regrouper les choses par lots (batches).

Regrouper les appels (batching)

Comme nous l’évoquions plus tôt, nous devons créer un petit nombre de batches qui contiennent beaucoup de formes.

En faisant attention à la manière dont on crée ces batches, on peut vraiment accélérer les choses. Il est souhaitable de placer le plus possible de formes dans un batch et ceci pour deux raisons.

Premièrement, lorsque le processeur dit au processeur graphique d’effectuer un dessin, le processeur doit faire beaucoup de travail. Il doit faire des choses comme : préparer le processeur graphique, envoyer le shader et vérifier différents bogues matériels. Tout cela s’ajoute au reste et pendant que le processeur fait ce travail, le processeur graphique peut être inactif.

Deuxièmement, il y a un coût à changer d’état. Admettons que vous deviez changer de shader entre deux lots. Sur un processeur graphique classique, vous devez attendre jusqu’à ce que tous les cœurs aient fini de traiter le shader en cours. On appelle cela purger le pipeline (draining the pipeline). En attendant que le pipeline soit purgé, les autres cœurs vont rester inactifs.

[image: Plusieurs cœurs de processeur graphique attendant pendant qu’un termine le travail avec le _pixel shader_ précédent]

Pour cette raison, il convient de grouper le plus possible. Pour un PC de bureau classique, on vise 100 requêtes de dessin ou moins par image, avec de préférence des centaines de sommets par requête. De cette manière, vous tirerez le meilleur parti du parallélisme.

On se penche sur chaque passe de l’arbre de tâches de rendu et on identifie ce qu’on peut regrouper en un seul lot.

Actuellement, chaque type de primitive requiert un shader différent. Par exemple, il y a un shader de bordure, un shader de texte, un shader d’image.

[image: Boîtes désignées avec le type de batch qu’elles contiennent (par exemple, Bordures, Images, Rectangles)]

On pense que l’on peut combiner un grand nombre de ces shaders, ce qui nous permet d’avoir des lots encore plus importants, mais c’est déjà très bien groupé.

Nous sommes presque prêts à envoyer cela au processeur graphique. Mais il reste un tout petit peu de travail que nous pouvons éliminer.

Réduction des pixels shading avec des passes d’opacité et de transparence (Z‐culling)

La plupart des pages Web sont composées de nombreuses formes qui se chevauchent. Par exemple, un champ de texte est placé au‐dessus d’une div (avec un arrière‐plan) elle‐même placée au‐dessus du body de la page (avec un autre arrière‐plan).

Quand il identifie la couleur d’un pixel, le processeur graphique peut identifier la couleur du pixel dans chaque forme. Mais seul le calque supérieur va finir par être affiché. On appelle cela le sur‐coloriage et cela gaspille du temps de processeur graphique.

[image: 3 layers on top of each other with a single overlapping pixel called out across all three layers]

Une solution à cela serait d’effectuer le rendu de la forme du dessus en premier. Pour la forme suivante, lorsque vous arrivez au même pixel, vérifiez s’il dispose déjà d’une valeur. Si c’est le cas, vous pouvez éviter ce travail.

[image: 3 layers where the overlapping pixel isn’t filled in on the 2 bottom layers]

Cependant, cela crée un petit problème supplémentaire. Lorsqu’une forme est translucide, vous devez mélanger les couleurs des deux formes. Et pour que cela paraisse correct, il faut le faire de l’arrière vers l’avant.

Donc, nous divisons le travail en deux passes. La première est la passe opaque. On va de l’avant vers l’arrière et on réalise le rendu de toutes les formes opaques. On saute chaque pixel caché derrière un autre.

Puis, on s’occupe des formes translucides. Celles‐ci sont rendues de l’arrière vers l’avant. Si un pixel translucide se retrouve au‐dessus d’un pixel opaque, il est mélangé au pixel opaque. S’il est caché derrière un pixel opaque, il n’est pas calculé.

Ce processus de séparation du travail entre les passes transparentes et opaques et puis consistant à sauter les calculs de pixels inutiles est appelé Z‐culling.

Même si cela ressemble à une simple optimisation, le Z‐culling a apporté de grosses améliorations dans notre cas. Sur une page standard, cela réduit fortement le nombre de pixels sur lesquels vous devez travailler, et nous sommes actuellement en train de chercher d’autres moyens pour transférer plus de travail à la passe opaque.

À ce stade nous avons préparé l’image. Nous avons fait du mieux que nous le pouvions pour nous épargner du travail.

… Et nous sommes prêts à dessiner !

Nous sommes prêts à préparer le processeur graphique et lancer le rendu de nos lots.
[image: Diagram of the 4 threads with compositor thread passing off opaque pass and alpha pass to GPU]

Attention : tout n’est pas encore sur le processeur graphique

Le processeur a toujours du travail de coloriage à faire. Par exemple, il continue d’assurer le rendu des caractères (appelés glyphes) qui sont utilisés dans les blocs de texte. Il est possible de le faire sur le processeur graphique, mais cela reste difficile d’obtenir un rendu pixel à pixel équivalent à celui des glyphes que l’on obtient avec d’autres applications sur la même machine. Donc, les utilisateurs pourraient trouver cela désorientant de voir des polices de caractères rendues par processeur graphique. Nous menons des expérimentations afin de passer des choses comme les glyphes au processeur graphique avec le projet Pathfinder.

Pour l’instant, toutes ces choses sont coloriées en images matricielles (bitmaps) par le processeur. Puis, elles sont transférées dans ce qu’on appelle le cache de textures sur le processeur graphique. Ce cache est conservé d’une image à l’autre, parce que souvent ces choses ne changent pas.

Et même si ce travail de coloriage reste sur le processeur, on peut quand même le rendre plus rapide qu’à l’heure actuelle. Par exemple, lorsqu’on peint les caractères d’une police, on répartit les caractères entre les différents cœurs. On fait cela en utilisant les mêmes techniques que Stylo utilise pour paralléliser le traitement des styles : le vol de travail.

Quel futur pour WebRender ?

Nous avons hâte d’intégrer WebRender à Firefox dans le cadre de Quantum Render en 2018, quelques versions après la sortie initiale de Firefox Quantum. Cela rendra les pages actuelles plus fluides. Cela va aussi préparer Firefox pour la nouvelle vague de haute résolution 4K, parce que les performances de rendu deviennent encore plus critiques lorsque vous augmentez le nombre de pixels à l’écran.

Mais WebRender n’est pas seulement utile à Firefox, il est aussi capital pour le travail que nous réalisons sur WebVR, où nous devons réussir le rendu d’une image différente pour chaque œil à 90 FPS et pour une résolution 4K.

Une première version [N. D. T. : très early] de WebRender est actuellement accessible sur Firefox via deux drapeaux : gfx.webrender.enabled et gfx.webrendest.enabled. Le travail d’intégration est toujours en cours, donc les performances ne sont pas encore au niveau de ce qu’elles seront quand tout sera terminé. Si vous voulez vous tenir informés des développements sur WebRender, vous pouvez suivre le dépôt GitHub, ou suivre Firefox Nightly sur Twitter pour des nouvelles hebdomadaires sur la totalité du projet Quantum Render.

Aller plus loin

	
The whole web at maximum FPS: How WebRender gets rid of jank
(327 clics)

	
Les entrailles d’un interpréteur CSS très rapide : Quantum CSS (alias Stylo)
(552 clics)

	
Découvrir Firefox Quantum
(243 clics)

EPUB/493271b9d7131b4002d64ff0ba08b79fca1cdf03d3e2c01d53c8b39e.png
oo, s paint. composite
4 layout , :

\ | |
\ /
main
thread

EPUB/caa087c5ccd0b013f9e704ec73beb1dbab6ed5cb1bc44b4a685c912b.png

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/bed5df1d50366d3c81afa565dccaa7ad8bb21136f447bb7250db560a.gif

EPUB/bf0d7be471c77ae208aacebedf3646534814e37dfb6795bd273e3056.png

EPUB/616b5cf0a35c87274f6c4b237de6488835e2377b0f391cd5de921f5d.gif

EPUB/f5b4558514a12d47ae2ff34350c6a41531aedf794db44a8bd48206eb.png

EPUB/da2698b61dd37e9b181d29ed484ee8e6f7ca33855c6feaa7459dc15a.gif

EPUB/ffe3027a5dcfb2a814dcbc6e254479aa968bdb7762b112d6999a9f74.png
sl f

EPUB/f3b233a262a8990995878b4e15881bc9fe258742fb87368ed48d3769.gif
repaint \

EPUB/0baf746998a18445a9badcdf1357ffb24fa17604b250044f90c374d4.png

EPUB/d2265556403b9ef848cdee442980db47b4016d145695ce56672a15aa.png
Root

Opacity

Box_Shadow

intermediate
render target

0

EPUB/44f7ad2fab3540a364a56fcb69a200037f7769d08bbd509f8b74bea2.png
main
thread

RenderBackend
thread

opaque pass

it
oot (50 I

Sehgs

[Y B

EPUB/8bb9dd7bfa6d04ba7bdada91a6bbc01f1ad849fd775773660daad5b3.png
Quantum €55
(aa Sejed Quantum Render
(et westende

Quantum Flow

Quantum
Compositor

Quantum DOM

EPUB/d791f9faf8bf79ffb1cb98f50464ed651a6c9bda479e6d6d093d3bba.png
intermediate
render target

n
(-)

EPUB/93febab60378b2a31e1365121d5b0a276a9de76fc9daf309ad74cc62.png
main
thread

compositor
thread

GPU

EPUB/d3f1fd354c050ae638ed1c5767f18abdce7e26a22e86530e125ad6ad.png
remove any items
that are offscreen

EPUB/eab68d8c6be7446493dbc72f0940b880f48848425743677327eb5ae3.png
o) ——

EPUB/0f828a8e7ad27d351e25312dd6d814440a958e6e0fe1d9185ec7bb0e.png
(0.5, 0.5, -0.5],
[-0.5, 0.5, -0.5],
[-0.5, -0.5, -0.5]

r
~

[0.5, 0.5, -0.5],
[-0.5, -0.5, -0.5],
[0.5, -0.5, -0.5]

[|

[0.25, 0, 0.5],
[-0.25, 0.25, 0.5],
[-0.25, -0.25, 0.5]

EPUB/46230f47ca766da6c2dbb9f9a1066f3cb77d1415301181de99b7cd8f.png

EPUB/df3a6c8c2c8ebb00b57194d34e71a03ac8c8367351ceabea51cf177d.png
oh no

/S /

transform opacity

animating
background color

EPUB/bc439d5dd9f9932b8a68fd4db68a4102cbb42ddde3723e213c7f48b2.png
frame buffer
3

EPUB/de25057df9b920b0ac13309e65c31a792e6293730e023bd5ed003d26.png

EPUB/imagessections33.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/ecdf0ee58791e6e2523f2654507e8739cbb21ac911a3f73ca62fc3c9.png
main
thread

compositor
thread

GPU

\

EPUB/7b2902146feac66d766a8c1393601886e626d3ea9d4dd2691d90aaad.png

EPUB/6b9208e85edbe87c06d2b49ca83a98d4b01ece600e48ace7639133cf.png
Ok, cores, time
for a new pixel

‘shader.
/ Wait! I'm not
| done with the
/ lagt one vtl

/

A

EPUB/aeb9df0f2b2ee0f8c1a5ee076e1cf44bbfab0e7440726548b2991faf.png
(1 realy shouid get
A)

=\ sometime soon__

EPUB/d6f1f463ffecaed926f725f293f3a14583b93dec6d92e93134344890.png
composite work is
wasted, producing
the same_thing

/ as paint

EPUB/829407a0742e06439b452c94bab6e61239ce36a857535a61717302ba.png
first, generate
the layers and
render.

L

then throw out

\ &/ the layers
-

EPUB/0cc9849d51afd59c03fda47615a03f787de995ae8c46a0759aa20a6c.png
oOG—

EPUB/c923fc04b0fc0711ea2d4fb05c4d7b4cde71b57a9112d06f95015592.png

EPUB/0feab327ed7deb26195b0e93c8a08c2262a8a84d6abfeeedc35b2f9e.png
main

thread
™ waslae Hghlevel commands
=== o

RenderBackend
thread
compositor
thread
GPU

EPUB/68ede20306b8e952abd692303da47c84ac9bc8688e6d3bf5ae40bb9a.png
layout hands off
o display fist

RENDER

paint and composite
are. combined

EPUB/8f3ccfd44105f05188c18231873a0bafbb7e85aa51c601e11d785ea9.png
Can you draw
this triangle

CPU /(ov me?

GPU

EPUB/6fc076f11a852a301a4e235587211466abf11f0b047fe5830680fe43.png

EPUB/b3b310851e319bfaf6d280a299fa01aa78a137d7311252d2eea79a7a.png
Here's a batch of
triangles for you.

CcPU I've included the

s ixl shader you
need to use.

GPU

EPUB/8c6b7bfd5f25f25c3cdac25cf5f1c88237ae61c5ea9d558d0fd13edc.png
sources destination

EPUB/9a84ffbba73d839a93b4518e40133b2a1018f321d5ae9ca93da23451.gif
layer

EPUB/70ae34e02a02911251c0839871a1b58faa3d74503dc74f635afeb088.png

EPUB/371e1f125f4fa9998473b6c4ae0701b6189ac46f4ddbc3ce61f62609.png
figure out
what the page
should look ke

draw the page
on the screen

e frame tree
(aka render tree)

composiTe,

EPUB/41840e47ea5127c0a4c38c0c3437bec1160fa537007c0bc0357ad065.png

EPUB/0feb1d5db60a9be8beaa4b72ffa4633edab24a9d2b1bc973478a870f.png
“group {

opacity: 05
i x

box {
box-shadow: 3px 3px #666;

<div class="group">
<div class="box"></div>
<div class="box"></div>
<div class="box"></div>
</div>

EPUB/59a87b1b60d97adb917904e235a1a64ee93442ce8b8eae9115d42916.png

