

Journal Durcir nginx et PHP avec systemd

Posté par Samuel (site web personnel) le 03 février 2022 à 12:00.
Licence CC By‑SA.

Étiquettes :

	sécurité

	systemd

	nginx

	php

	selinux

	serveur_web

	debian

[image:]

Sommaire

	
Les fichiers de configuration
	PHP

	Nginx

	Installation

	Activation par socket

	
Confiner les services avec systemd
	Directives de confinement

	Évaluer l'efficacité de ces mesures

	Relâcher les mesures de confinement

	Instances de services systemd

	Considérations de sécurité

	Références

Dans une installation Linux-nginx-PHP classique, on a:

	systemd qui doit orchestrer les services et s'exécute en root (inévitable)

	nginx qui reçoit les les requêtes web et les répartit, notamment vers php-fpm. Il fonctionne avec un processus maître qui fonctionne en root pour se mettre en écoute sur le port 443 et des workers, non privilégiés, qui traitent les requêtes

	php-fpm qui tourne sous root, reçoit les requêtes vers des scripts PHP de la part de nginx et les répartit vers des workers moins privilégiés (qui, sous Debian, s'exécutent sous l'utilisateur www-data).

Ça fait beaucoup trop de choses qui tournent avec les droits root. Systemd, c'est inévitable. Mais:

	php-fpm il n'y a aucune raison

	nginx a simplement besoin de pouvoir écouter sur le port 443 (port privilégié). On peut confier cette tâche à systemd et ainsi réduire les droits de nginx.

On peut donc configurer tout ça de façon :

	à exécuter php-fpm et nginx sans les droits root grâce à l'activation par socket

	à isoler les différentes applications PHP qui s'exécutent grâce aux template units de systemd

	à bloquer certaines escalades de privilège vers root (Baron Samedit, PwnKit, PHP-FPM local root vulnerability) et empêcher l'exploitation de failles de type SSRF

Les fichiers de configuration

Je reprends ici la configuration correspondant à Debian bullseye (stable en février 2022). Il faudra sans doute adapter les chemins/exécutables ou versions à votre système.

PHP

	
/etc/systemd/system/php-fpm@.service :

[Unit]
Description=The PHP 7.4 FastCGI Process Manager for %i
Documentation=man:php-fpm7.4(8)
After=network.target php-fpm@%i.socket
On a besoin de php-fpm@%i.socket pour ouvrir les ports et les envoyer à PHP-FPM
Requires=php-fpm@%i.socket

[Service]
Type=notify
Environment="FPM_SOCKETS=/run/php/%i.socket=3"
ExecStart=/usr/sbin/php-fpm7.4 --nodaemonize --fpm-config /etc/php/7.4/fpm/%i.conf
ExecReload=/bin/kill -USR2 $MAINPID
StateDirectory=%i
RuntimeDirectory=%i
LogsDirectory=%i
SupplementaryGroups=%i

Options de durcissement
DynamicUser=true
PrivateUsers=true
ProtectSystem=strict
PrivateTmp=true
PrivateNetwork=true
NoNewPrivileges=true
RestrictAddressFamilies=AF_UNIX
IPAddressDeny=any
SystemCallFilter=@system-service
SystemCallFilter=~@resources @privileged
CapabilityBoundingSet=
MemoryDenyWriteExecute=true
UMask=0077
ProtectHome=true
PrivateDevices=true
ProtectControlGroups=true
ProtectKernelModules=true
ProtectKernelTunables=true
ProtectKernelLogs=true
SystemCallArchitectures=native
RestrictNamespaces=true
LockPersonality=true
RestrictRealtime=true
RemoveIPC=true
ProtectHostname=true
ProtectClock=true
ProtectProc=invisible
ProcSubset=pid
RestrictSUIDSGID=true

	
/etc/systemd/system/php-fpm@.socket :

[Unit]
PartOf=php-fpm@.service
Documentation=https://freedesktop.org/wiki/Software/systemd/DaemonSocketActivation/#php-fpm

[Socket]
ListenStream=/run/php/%i.socket
SocketMode=0660
SocketUser=php
SocketGroup=www-data

[Install]
WantedBy=sockets.target

	
/etc/php/7.4/fpm/mon-application.conf (pour chaque application PHP que vous souhaitez isoler) :

[global]
pid = /run/mon-application/pid
error_log = /var/log/mon-application/error.log

[www]
listen = /run/php/mon-application.socket
access.log = /var/log/mon-application/access.log
php_admin_value[session.save_path] = /var/lib/mon-application
php_admin_value[pcre.jit] = 0

; Ci-dessous sont les options proposées par Debian par défaut pour un worker php
; Je vous renvoie à la documentation pour plus d'info : https://www.php.net/manual/fr/install.fpm.configuration.php
pm = dynamic
pm.max_children = 5
pm.start_servers = 2
pm.min_spare_servers = 1
pm.max_spare_servers = 3

Nginx

	
/etc/systemd/system/nginx.service :

[Unit]
Description=A high performance web server and a reverse proxy server
Documentation=man:nginx(8)
After=network.target nss-lookup.target nginx.socket
On a besoin de nginx.socket pour ouvrir les ports et les envoyer à nginx
Requires=nginx.socket

[Service]
PIDFile=/run/nginx/pid
ExecStart=/usr/sbin/nginx -g 'daemon on; master_process on;'
ExecStop=-/sbin/start-stop-daemon --quiet --stop --retry QUIT/5 --pidfile /run/nginx/pid
TimeoutStopSec=5
Environment=NGINX=3:4:5:6:
NonBlocking=true
dans la ligne suivante : pensez à ajouter toute application pour laquelle vous auriez créé un groupe
SupplementaryGroups=ssl-cert mon-application

Options de durcissement
User=www-data
PrivateUsers=true
LogsDirectory=nginx
ProtectSystem=strict
RuntimeDirectory=nginx
ReadOnlyPaths=/etc/certificats/actif/
PrivateTmp=true
NoNewPrivileges=true
RestrictAddressFamilies=AF_UNIX
IPAddressDeny=any
PrivateNetwork=true
SystemCallFilter=@system-service
SystemCallFilter=~@resources @privileged
CapabilityBoundingSet=
MemoryDenyWriteExecute=true
UMask=0077
ProtectHome=true
PrivateDevices=true
ProtectControlGroups=true
ProtectKernelModules=true
ProtectKernelTunables=true
ProtectKernelLogs=true
SystemCallArchitectures=native
RestrictNamespaces=true
LockPersonality=true
RestrictRealtime=true
RemoveIPC=true
ProtectHostname=true
ProtectClock=true
ProtectProc=invisible
ProcSubset=pid
RestrictSUIDSGID=true

[Install]
WantedBy=multi-user.target

	
/etc/systemd/system/nginx.socket :

[Unit]
PartOf=nginx.service
Documentation=https://freedesktop.org/wiki/Software/systemd/DaemonSocketActivation/

[Socket]
ListenStream=80
ListenStream=0.0.0.0:80
ListenStream=443
ListenStream=0.0.0.0:443
BindIPv6Only=ipv6-only

	
Dans /etc/nginx/nginx.conf, il faut :

	retirer la directive user

	modifier la directive pid pour indiquer un fichier sous /run/nginx

	adapter les directives fastcgi_pass pour pointer sur les adresses du type unix:/run/php/mon-application.socket

Exemple d'un fichier de configuration minimal :

pid /run/nginx/pid;

events {
}

http {
 include mime.types;

 # Serveur HTTP (sans chiffrement)
 server {
 listen [::]:80 default_server;
 listen 80 default_server;
 server_name _;
 return 404;
 }
 # Afficher les statistiques nginx pour les requêtes depuis localhost et ciblant 127.0.1.1 :
 server {
 listen 127.0.1.1:80;
 server_name _;
 stub_status;
 }

 # Serveur HTTP redirigeant vers HTTPS
 server {
 listen [::]:80;
 listen 80;
 server_name mon-application.example.com;

 # On redirige vers la version https
 location / {
 return 302 https://$host$request_uri;
 }
 }

 # Serveur HTTPS (avec chiffrement TLS)
 server {
 listen [::]:443 ssl default_server;
 listen 443 ssl default_server;
 server_name mon-application.example.com;

 ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
 ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;
 ssl_protocols TLSv1.3;

 index index.php index.html;
 root /var/www/mon-application/public/;
 location ~ \.php$ {
 include fastcgi.conf;
 fastcgi_pass unix:/run/php/mon-application.socket;
 }
 }
}

Installation

Les commandes suivantes sont à lancer avec root ou via sudo

systemctl disable --now php7.4-fpm.service # Désactivation des anciens processus si nécessaire
systemctl daemon-reload # Prise en compte des nouveaux fichiers systemd
 # pour chaque application PHP installée :
groupadd --system mon-application
chown -R root:mon-application /var/www/mon-application
find /var/www/mon-application -type f -exec chmod 640 {} + -o -type d -exec echo chmod 750 {} +
systemctl enable --now php-fpm@mon-application.socket
 # Pour chaque clé/certificat TLS utilisé par nginx :
chgrp ssl-cert /etc/xxx/yyyy/mes-certificats.key
chmod 640 /etc/xxx/yyyy/mes-certificats.key
systemctl restart nginx

Activation par socket

Systemd peut se placer en écoute sur des ports réseau, des sockets ou des files FIFO puis transférer les flux entrants aux programmes correspondants, pour peu que ceux-ci soient configurés pour : ils reçoivent alors ces sockets sous forme de file descriptors numérotés à partir de 3 (après STDIN, STDOUT et STDERR). Il est possible de ne démarrer le service voulu que lorsqu'un premier message arrive sur la socket en question, c'est même la motivation initiale de cet outil.

Nginx peut être configuré pour récupérer ces sockets grâce à la variable d'environnement (non documentée) NGINX. La seule façon dont j'ai réussi à faire fonctionner nginx de cette façon a été d'indiquer la valeur 3:4:5:6: (info glanée sur la page DaemonSocketActivation for nginx and php-fpm).

PHP-FPM peut aussi être configuré pour récupérer ces sockets grâce à une variable d'environnement non documentée : FPM_SOCKETS. Elle est de la forme : /run/php/app.socket=3 ou /run/php/pool1.socket=3,/run/php/pool2.socket=4,/run/php/pool3.socket=5 si on a plusieurs pool de workers PHP orchestrés par FPM (mais s'il s'agit de séparer plusieurs applications, il vaut mieux utiliser des services systemd différents, cf. plus bas).

Confiner les services avec systemd

Directives de confinement

Systemd met à disposition de nombreuses options pour confiner les services :

	
User, Group : le service est lancé avec les privilèges de l'utilisateur et/ou du groupe indiqué. Cela évite de lancer avec les droits de l'utilisateur root tout-puissant (ce qui est fait par défaut pour nginx et php-fpm). Il faut alors s'assurer que l'utilisateur indiqué a bien accès aux ressources nécessaires (fichiers PHP pour php-fpm, fichiers statiques servis par nginx, etc.)

	
DynamicUser : le service est lancé sous un utilisateur créé pour ça, et détruit lorsque le service s'éteint. Il est possible de donner des droit sur des répertoires particuliers via l'option SupplementaryGroups

	
PrivateNetwork, PrivateUsers, PrivateIPC, ProtectHostname, PrivateMounts : place le service dans des namespaces isolés du reste du système, reprenant ainsi les outils d'isolation utilisés par les techologies de conteneurisation (Docker, LXC). Si on souhaite ajouter une cage "chroot" pour se rapprocher davantage d'un conteneur type docker, on peut utiliser les directives RootDirectory ou RootImage

	
PrivateTmp, ProtectHome, ProtectSystem : isole /tmp des autres applications, rend /home et /root inaccessibles et place l'ensemble du système en lecture seule. On peut relâcher ces contraintes en indiquant des répertoires qui doivent rester accessibles en lecture ou en écriture (ReadOnlyPaths,ReadWritePaths) ou plus simplement en indiquant quels répertoires sous /run, /var/lib, /var/cache ou /var/log sont utilisés (RuntimeDirectory, StateDirectory, CacheDirectory et LogsDirectory)

	
SystemCallFilter, CapabilityBoundingSet : limitent les appels système et les capabilities atteignables par le processus ou ses enfants.

	
IPAddressAllow, IPAddressDeny : filtrer les flux réseaux autorisés en entrée et en sortie. Les flux établis via les sockets associés au service ne sont pas concernés par ces restrictions.

… et tout un tas d'autres qu'il est fastidieux de lister ici. Je vous renvoie à Mastering systemd: Securing and sandboxing applications and services qui présente les options introduites dans RHEL 7 et 8. De nouvelles directives sont ajoutées au fil des versions de systemd.

Évaluer l'efficacité de ces mesures

La commande systemd-analyze security nginx.service permet de lister les directives appliquées ou non et de calculer un score entre 0 (service fortement durci, dont la compromission aura un impact minimal sur le système en terme de sécurité) et 10 (service non durci, dont la compromission peut entraîner la compromission de tout le système). Sur une Debian stable, passer du fichier nginx.service proposé par défaut à celui poposé ci-dessus fait descendre le score de 9,6 à 0,2.

Pour évaluer plus concrètement le confinement mis en place, on peut déployer un web shell PHP. Quelques résultats :

	
ls /home : Error in Code Execution --> ls: cannot open directory '/home': Permission denied

	
ls -alh /run : on constate que tous les fichiers sont détenus soit par root, soit par nobody (on ne "voit pas" les autres utilisateurs). Cependant, getent passwd permet de retrouver la liste des comptes installés.

	
ls /tmp : vide

	
ls /proc -alh : on ne voit que les processus exécutés par php-mon-application.

	
nslookup linuxfr.org : Error in Code Execution --> ;; connection timed out; no servers could be reached

	
sudo /bin/true : Error in Code Execution --> sudo: effective uid is not 0, is sudo installed setuid root?

Relâcher les mesures de confinement

Certaines de ces mesures peuvent être trop drastiques pour les applications hébergées. Le blocage du réseau, par exemple, empêche nginx de récupérer ses réponses OCSP pour agrafage, ou peut l'empêcher de faire reverse proxy vers des applications sur d'autres machines ou sur la même machine mais accessibles uniquement via TCP/IP (directives proxy_pass http://127.0.0.1:xxxx/;). Si votre base de données est hébergée sur le même serveur, l'application PHP peut sans doute s'y connecter par socket Unix, mais si ça n'est pas le cas elle aura besoin d'accéder au réseau. Elle peut aussi avoir besoin d'écrire dans tel ou tel répertoire. Enfin, il est possible que telle ou telle bibliothèque ait besoin d'appels systèmes indûment bloqués par le confinement trop strict imposé (c'est ainsi qu'on a dû désactiver le JIT pcre dans la configuration car incompatible avec la directive MemoryDenyWriteExecute).

Pour cela, vous pouvez modifier directement les fichiers .service ci-dessus ou créer le dossier /etc/systemd/system/php-fpm@mon-application.service.d/ (par exemple) et y ajouter un fichier relachement.conf :

[Service]
Pour rendre le dossier 'upload' accessible en écriture, il faut ̀ chmod 660` le dossier et ajouter la ligne :
ReadWritePaths=/var/www/mon-application/upload

Pour autoriser les flux réseau :
PrivateNetwork=false
RestrictAddressFamilies=
Si on veut ouvrir à des requêtes sur localhost uniquement :
RestrictAddressFamilies=AF_UNIX AF_INET
IPAddressAllow=localhost
Si on veut ouvrir à des requêtes sur tout internet :
RestrictAddressFamilies=AF_UNIX AF_INET AF_INET6
IPAddressAllow=any

Instances de services systemd

Les fichiers PHP de systemd ci-dessus contiennent un @ et on a indiqué %i à plusieurs reprises : cela permet de créer plusieurs instances de services similaires.

Ainsi, si vous avez 3 applications différentes, vous pouvez créer autant de fichiers de configuration sous /etc/php/7.4/fpm/ et activer ces services indépendamment avec systemctl start|stop|reload|status php-fpm@applicationX.service. Chaque service proposera sa propre socket sous /run/php, il faudra configurer nginx en conséquence.

En restreignant les droits d'accès à /var/www/applicationX/ comme proposé ci-dessus (section installation) vous empêchez un attaquant qui compromettrait une application d'accéder aux informations liées à une autre des applications.

Considérations de sécurité

Sauf faille de sécurité supplémentaire, une fois ces mesures mises en place la compromission de nginx ou php-fpm ne pourra plus aboutir aux conséquences suivantes :

	installation d'applications arbitraires / rootkit

	accès aux clés SSH du serveur

	escalade de privilège vers root

	exfiltration de données ou exécution de code via Server-Side Request Forgery

	accès direct aux données stockées sur le serveur

Néanmoins :

	l'attaquant qui compromet une application PHP déployée sur le serveur pourra toujours :

	voler les accès et les données d'un autre utilisateur

	accéder à la base de données sans filtre ou à toute donnée à laquelle l'application donne accès (il ne pourra pas accéder au code ou aux données d'une autre application hébergée sur la même machine)

	l'attaquant qui compromet nginx pourra inévitablement accéder aux clés TLS et potentiellement déchiffrer le traffic des autres usagers de l'application

Pour sécuriser davantage, il faut configurer un Linux Security Module comme apparmor ou SELinux.

Références

	
Socket activation part 1 et Socket activation part 2

	DaemonSocketActivation for nginx and php-fpm

	Mastering systemd: Securing and sandboxing applications and services

	man systemd.socket

	man systemd.exec

	man systemd.resource-control

	man systemd.unit

	documentation: configuration FasctCGI Process Manager

	nginx ticket#237: Add optional systemd socket activation support

	traitement de l'option FPM_SOCKETS dans le code source de PHP

	What is SSRF ?

	PHP-FPM local root vulnerability

	PwnKit: Local Privilege Escalation Vulnerability Discovered in polkit’s pkexec (CVE-2021-4034)

	CVE-2021-3156: Heap-Based Buffer Overflow in Sudo (Baron Samedit)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/avatars933044000avatar.png

