

Forum Astuces.divers [Admin] Construire des mots de passe forts mais facilement reconstructibles

Posté par Olivier Grisel (site web personnel) le 10 novembre 2007 à 15:59.

Étiquettes :
aucune

Voici un petit script en python qui construit des mots de passe forts (pas dans les dictionnaires) en prenant les 8 premiers caractères de la version base64 du digest hexadécimal sha de la concaténation d'un mot de passe maitre (unique) faible mais simple à retenir et d'une clef specifique au domaine d'utilisation du mot de passe (typiquement le nom du service ou de la machine).

Cette méthode permet de construire un ensemble illimité de mot de passe à partir d'un mot de passe maitre unique donc facilement mémorisable pour pouvoir retrouver tous les autres en cas d'oublis.

La base64 sert à avoir une distribution des caractères sur l'alphabet complet (majuscules et minuscule) + les characteres numeriques.

Voici donc mkpasswd.py

#!/usr/bin/python

"""Utility script to build a set of strong yet rebuildable passwords

The final password is build from a potentialy weak but easy to remember yet

secret master password and a domain-specific key like the name of the website

you are building a password for.

The password is then the 8th first characters of the base64 encoding of

hexadecimal sha digest of the concatenation of the master seed and the domain

key::

 >>> make_password("foobar", "amazon")

 'YWRjM2Fl'

 >>> make_password("foobar", "paypal")

 'MzM2Yzhm'

 >>> make_password("foobar", "paypal", lowercase=True)

 'mzm2yzhm'

:author: Olivier Grisel <olivier.grisel@ensta.org>

This script is placed in the Public Domain:

http://creativecommons.org/licenses/publicdomain/

"""

import sha, base64

LENGTH = 8

LOWERCASE = False

def make_password(master_seed, domain_key, lowercase=LOWERCASE):

 hash = sha.new(master_seed + domain_key).hexdigest()

 password = base64.b64encode(hash)[:LENGTH]

 if lowercase:

 return password.lower()

 else:

 return password

def main():

 # seed and domain prefix are read interactively from stdin to avoid

 # password data to be stored in the shell command history

 master_seed = raw_input("master seed: ")

 domain_key = raw_input("domain key [e.g. 'paypal']: ")

 print "your password is:", make_password(master_seed, domain_key)

def _test():

 import doctest

 doctest.testmod()

if __name__ == "__main__":

 import sys

 if len(sys.argv) > 1 and sys.argv[1] == "--selftest":

 _test()

 else:

 main()

Utilisation:

 $ python mkpasswd.py

Pour lancer les tests:

 $ python mkpasswd.py --selftest

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

