

Forum Linux.débutant Comment intégrer les modifications au mini-shell

Posté par delirva le 30 décembre 2015 à 09:50.
Licence CC By‑SA.

Étiquettes :
aucune

bonjour,

un petit shell simple se compose des deux fichiers decouper.c et minishell.c (fichiers joints) ;

comment apporter les modifications suivants;

Les processus en arrière plan

La commande cd

Les redirections d'entrées-sorties vers des fichiers (avec >, >> et < au moins).

Les pipes (y compris l’enchaînement de deux pipes comme dans ls | cat | wc).

merci de m'aider !

bonnes fêtes !

cordialement

/* decouper.c
 Un wrapper autour de strtok
*/
include <stdio.h>
include <string.h>

/* decouper -- decouper une chaine en mots */
int
decouper(char * ligne, char * separ, char * mot[], int maxmot){
 int i;

 mot[0] = strtok(ligne, separ);
 for(i = 1; mot[i - 1] != NULL; i++){
 if (i == maxmot){
 fprintf(stderr, "Erreur dans la fonction decouper: trop de mots\n");
 mot[i - 1] = NULL;
 break;
 }
 mot[i] = strtok(NULL, separ);
 }
 return i;
}

ifdef TEST
int
main(int ac, char * av[]){
 char *elem[10];
 int i;

 if (ac < 3){
 fprintf(stderr, "usage: %s phrase separ\n", av[0]);
 return 1;
 }

 printf("On decoupe '%s' suivant les '%s' :\n", av[1], av[2]);
 decouper(av[1], av[2], elem, 10);

 for(i = 0; elem[i] != 0; i++)
 printf("%d : %s\n", i, elem[i]);

 return 0;
}
endif

/* minishell.c

 Un shell elementaire (fork + exec et c'est tout)
 */
include <stdio.h>
include <stdlib.h>
include <unistd.h>
include <sys/types.h>
include <sys/wait.h>
include <assert.h>

enum {
 MaxLigne = 1024, // longueur max d'une ligne de commandes
 MaxMot = MaxLigne / 2, // nbre max de mot dans la ligne
 MaxDirs = 100, // nbre max de repertoire dans PATH
 MaxPathLength = 512, // longueur max d'un nom de fichier
};

void decouper(char *, char *, char **, int);

define PROMPT "? "

int
main(int argc, char * argv[]){
 char ligne[MaxLigne];
 char pathname[MaxPathLength];
 char * mot[MaxMot];
 char * dirs[MaxDirs];
 int i, tmp;

 /* Decouper UNE COPIE de PATH en repertoires */
 decouper(strdup(getenv("PATH")), ":", dirs, MaxDirs);

 /* Lire et traiter chaque ligne de commande */
 for(printf(PROMPT); fgets(ligne, sizeof ligne, stdin) != NULL; printf(PROMPT)){
 decouper(ligne, " \t\n", mot, MaxMot);
 if (mot[0] == NULL) // ligne vide
 continue;

 tmp = fork(); // lancer le processus enfant
 if (tmp < 0){
 perror("fork");
 continue;
 }

 if (tmp != 0){ // parent : attendre la fin de l'enfant
 while(wait(NULL) != tmp)
 ;
 continue;
 }

 // enfant : exec du programme
 for(i = 0; dirs[i] != NULL; i++){
 snprintf(pathname, sizeof pathname, "%s/%s", dirs[i], mot[0]);
 execv(pathname, mot);
 }
 // aucun exec n'a fonctionne
 fprintf(stderr, "%s: not found\n", mot[0]);
 exit(1);
 }

 printf("Bye\n");
 return 0;

}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

