

Forum Programmation.c Code assembleur incorrect généré à partir du code C (ARM Cortex-m3) ?

Posté par Yuul B. Alwright le 02 décembre 2021 à 15:32.
Licence CC By‑SA.

Étiquettes :

	gcc

	arm

	cortex

	assembleur

Hello,

J'ai un problème avec un code assembleur généré par GCC à partir d'un code C.

J'essaie d'écrire un firmware minimal pour un microcontrôleur, le LPC1769.

Il utilise le processeur ARM Cortex-M3. Mon firmware est simple :

* Exécute une fonction nommée "reset()" lors de la réinitialisation du processeur

* Dans cette fonction, je déclare 3 variables locales : 3 pointeurs vers 3

 différents registres, initialisés avec leur adresse

* Ensuite, j'écris une valeur dans chaque registre

Le problème:

Le CPU est réinitialisé après la première valeur que j'écris dans un registre

Le code de la fonction "reset()":

void reset() {
 // Define some registers
 // Register to define mode of the pins P0.16 to P0.26
 unsigned int *PINMODE1 = (unsigned int *)0x4002C044;
 // Register to define GPIO direction of pins P0.0 to P0.31
 unsigned int *FIO0DIR = (unsigned int *)0x2009C000;
 // Register to define GPIO value of pins P0.0 to P0.31
 unsigned int *FIO0SET = (unsigned int *)0x2009C018;

 // Config the GPIO to drive a LED
 // Enable P0.22 pin to put the line to ground
 *PINMODE1 = 0x00003000;
 // Set P0.22 as GPIO output
 *FIO0DIR = 0x400000;

 // To the eternity
 while (1) {
 // Wait
 for (int i = 0; i < 500000; ++i);

 // Toggle the LED via P0.22
 *FIO0SET ^= (0b1<<22);
 }

}

Le problème se situe à la ligne *PINMODE1 = 0x00003000;.

Le code assembleur généré par GCC et vue depuis GDB :

=> 0x0000001a <+18>: ldr r3, [r7, #8]
 0x0000001c <+20>: strb r6, [r0, #28]
 0x0000001e <+22>: ; <UNDEFINED> instruction: 0xf590601a
 0x00000022 <+26>: ldr r3, [r7, #4]

Le premier code assembleur, ldr, charge l'adresse 0x4002C044 dans le

enregistrer r3. Mais le deuxième code asm, strb, stocke-t-il la valeur

du registre r6 à l'adresse faite à partir de la valeur du registre

r0 plus un décalage de 28 ? Pourquoi ne pas simplement copier la valeur 0x00003000

à l'adresse stockée dans le registre r3' ? Pourquoi cette instruction indéfinie

0xf590601a ? Ce troisième code asm, le "undefied" 0xf590601a, est l'instruction qui réinitialise le CPU.

Je ne suis pas un expert en assembleur et je ne sais pas si c'est moi qui ne le comprend pas

ou si le code assembleur généré par GCC est erroné. Toute

aide est la bienvenue. ;)

Merci. :)

Voici la version de arm-none-eabi-gcc que j'utilise :

11.1.0 (Fedora 11.1.0-2.fc35)

Version de GDB :

11.1 (Fedora 11.1-2.fc35)

Version d'OpenOCD :

0.11.0

Voici le code C complet :

/* reset

Function run right after the reset of the CPU
 */
void reset() {
 // Define some registers
 // Register to define mode of the pins P0.16 to P0.26
 unsigned int *PINMODE1 = (unsigned int *)0x4002C044;
 // Register to define GPIO direction of pins P0.0 to P0.31
 unsigned int *FIO0DIR = (unsigned int *)0x2009C000;
 // Register to define GPIO value of pins P0.0 to P0.31
 unsigned int *FIO0SET = (unsigned int *)0x2009C018;

 // Config the GPIO to drive a LED
 // Enable P0.22 pin to put the line to ground
 /* *PINMODE1 |= (0x1<<12); */
 /* *PINMODE1 |= (0x1<<13); */
 *PINMODE1 = 0x00003000;
 // Set P0.22 as GPIO output
 /* *FIO0DIR |= (0x1<<22); */
 *FIO0DIR = 0x400000;

 // To the eternity
 while (1) {
 // Wait
 for (int i = 0; i < 500000; ++i);

 // Toggle the LED via P0.22
 *FIO0SET ^= (0b1<<22);
 }

}

int STACK[256];

const void *vectors[] __attribute__ ((section (".vectors"))) = {
 STACK + sizeof(STACK) / sizeof(*STACK),
 reset
};

Voici mon link script:

MEMORY {
 flash (RX) : ORIGIN = 0x00000000, LENGTH = 512K
 sram (RW!X) : ORIGIN = 0x10000000, LENGTH = 32K
}
SECTIONS {
 .vectors : { *(.vectors) } >flash
 .text : { *(.text) } >flash
 .rodata : { *(.rodata) } >flash
 .bss : { *(.bss) } >sram
}

Voici mon Makefile:

CFLAGS = -g -O0 -Wall
CFLAGS += -mthumb -mcpu=cortex-m3

CC = arm-none-eabi-gcc
LD = arm-none-eabi-ld
OBJCPY = arm-none-eabi-objcopy

all: blink.bin

blink.bin: blink.elf
 @echo "Make the binary"
 $(OBJCPY) -O binary blink.elf blink.bin

blink.elf: blink.o
 @echo "Linkage"
 $(LD) -T blink.ld -o blink.elf blink.o

blink.o: blink.c
 @echo "Compile the code"
 $(CC) -c $(CFLAGS) -o blink.o blink.c

clean:
 @echo "Clean the working dir"
 rm blink.o blink.elf blink.bin

debug: blink.elf
 gdb -x gdbconfig blink.elf

debug-mi: blink.elf
 gdb -i=mi -x gdbconfig blink.elf

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

