

Forum Programmation.c Enregistrement d'un .wav

Posté par misaki43 le 28 mai 2015 à 10:52.
Licence CC By‑SA.

Étiquettes :
aucune

Bonjour,

J'essaie d'enregistrer du son dans un format .wav, mais lorsque j'écoute le son, ce que j'ai enregistré est ralenti et plus grave, avez vous une idée de pourquoi ?

Déjà il faut savoir que je ne suis pas sure du "type" auquel doit correspondre le buffer lors de la récuperation audio "snd_pcm_readi(sound->capture_handle, buf, BUFFER_SIZE)" (pour l'instant mis de type int16_t puisque j'ai une carte sonore de type "SND_PCM_FORMAT_S16_LE"

Si vous ne voyez pas d'erreur je peux aussi donner les paramètres liés à la carte son.

Voici donc une partie du code où il y a sûrement l'erreur :

 if ((result = snd_pcm_readi(sound->capture_handle, buf, BUFFER_SIZE)) != BUFFER_SIZE)
 { // ici buf est de type int16_t mais je ne suis pas sure
 if (result == -EPIPE)
 {
 snd_pcm_recover(sound->capture_handle, result, 0);
 PRINT_WARNING("Miss sound sample");
 }
 else EXIT_ON_SOUND_ERROR(result, "read from audio interface '%s' failed %d\n", sound->device_name, result);
 }
 sound->nbIt++;

 for(j=0; j< BUFFER_SIZE; j++)
 {
 spectrum_l[j] = (float) buf[j * 2] / (float)(1 << 15);
 spectrum_r[j] = (float) buf[j * 2 + 1] / (float)(1 << 15) ;
 org[j] = buf[j*2];

/* c'est bizarre mais le buffer contient des informations de taille "double" (i.e. je dis que j'enregistre BUFFER_SIZE info mais il en contient BUFFER_SIZE*2 : je me suis dit que c'etait parce que la taille correspondait à l'information d'un unique channel mais ici c'est une hypothese */
 ord[j] = buf[j*2 + 1];
 }

 if((fpr !=NULL)&&(fpr !=NULL))
 {
 /*Il faut tout d'abord modifier l'entête (qui a été faite à un autre endroit mais qui parait correct en relecture). En effet il y a des données en plus donc la taille du fichier change. */
 fseek(fpr, 4, SEEK_SET);
 fseek(fpl, 4, SEEK_SET);
 val = 44 + BUFFER_SIZE*sizeof(int16_t)*(sound->nbIt)*2*2 -8;
 fwrite(&val, sizeof(int32_t), 1, fpr);
 fwrite(&val, sizeof(int32_t), 1, fpl);
 //Il y a auussi le nombre de données qui change
 fseek(fpr, 40, SEEK_SET);
 fseek(fpl, 40, SEEK_SET);
 val= (sound->nbIt)*BUFFER_SIZE*sizeof(int16_t)*2*2;//nbCan*nbEch*bitParEch/8

 fwrite(&val, sizeof(int32_t), 1, fpr);
 fwrite(&val, sizeof(int32_t), 1, fpl);
 //Finalement, on ajoute une ligne en fin de fichier avec les données
 fseek(fpr, 0, SEEK_END);
 fseek(fpl, 0, SEEK_END);
 fwrite(ord, (BUFFER_SIZE)*sizeof(int16_t), 1, fpr);
 fwrite(org, (BUFFER_SIZE)*sizeof(int16_t), 1, fpl);
 }

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

