

Forum Programmation.c implémentation d'une liste chaînée en langage c

Posté par gunsailor le 20 avril 2023 à 19:14.
Licence CC By‑SA.

Étiquettes :

	langage_c

bonjour,

je me suis acheté un bouquin: "Maîtrise des algorithmes en C" de Kyle Loudon.

j'arrive au 5eme chapitre qui parle des listes chaînées… je comprends l'algorithme, mais lors qu'il s'agit de le faire fonctionner, je tombe sur une erreur de libération de pointeur.

L'algorithme est le suivant:

list.h:

 #ifndef __LIST
 #define __LIST

 typedef struct ListElmt_{
 void *data;
 struct ListElmt_ *next;
 } ListElmt;

 typedef struct List_{
 int size;
 ListElmt *head;
 ListElmt *tail;
 int (*compare)(void *a, void *b);
 void (*destroy)(void *data);

 } List;

 void list_init(List* list, void (*destroy)(void *data));
 int list_destroy(List *list);
 int list_ins_next(List* list, ListElmt *element, void* data);
 int list_rem_next(List* list, ListElmt *element, void** data);

 #define list_next(element) ((element)->next)
 #define list_head(list) ((list)->head)
 #define list_tail(list) ((list)->tail)
 #define list_is_head(list, element) \
 ((element) == ((list)->head)?1:0)
 #define list_is_tail(element)\
 ((element)->next == NULL?1:0)
 #define list_data(element) (element)->data
 #define list_size(list) (list)->size

 #endif

et list.c:

 #include<stdlib.h>
 #include<string.h>
 #include"list.h"

 void list_init(List* list, void (*destroy)(void *data))
 {
 list->size = 0;
 list->head=NULL;
 list->tail= NULL;
 list->destroy = destroy;
 }

 int list_destroy(List *list)
 {
 void *data;
 while(list_size(list) > 0)
 {
 if(list_rem_next(list, NULL, (void**) &data) == 0 && list->destroy != NULL)
 {
 list->destroy(data);
 }
 }
 memset(list, 0, sizeof(list));
 return 0;
 }

 int list_ins_next(List * list, ListElmt * element, void * data)
 {
 ListElmt * newElmt;

 if((newElmt = (ListElmt*) malloc(sizeof(ListElmt))) == NULL)
 return -1;
 newElmt->data = (void*) data;

 if(element == NULL)
 {
 if(list_size(list) == 0)
 list->tail = newElmt;

 newElmt->next = list->head;
 list->head = newElmt;
 }else{
 if(element->next = NULL)
 list->tail = newElmt;

 newElmt->next = element->next;
 element->next = newElmt;
 }

 list->size++;
 return 0;
 }

 int list_rem_next(List *list, ListElmt *element, void **data)
 {
 ListElmt * lastElmt;

 if(list_size(list) == 0)
 return -1;

 if(element == NULL)
 {
 *data = list->head->data;
 lastElmt = list_head(list);
 list->head=list_head(list)->next;
 if(list_size(list) == 1)
 list->tail = NULL;
 }else{
 if(element->next == NULL)
 return -1;

 *data = element->next->data;
 lastElmt = element->next;
 element->next = element->next->next;

 if(element->next == NULL)
 list->tail = element;
 }
 free(lastElmt);
 list->size--;
 return 0;
 }

et voici comment j'essaie de le faire fonctionner:

 #include<stdio.h>
 #include"list.h"
 #include<time.h>
 #include<stdlib.h>

 int main()
 {
 int a[4] = {9,2,1,7};
 List list;
 list_init(&list, NULL);
 for(int i = 0; i < 4; i++)
 list_ins_next(&list, NULL, &a[i]);
 printf("%d\n", *((int*)(list_head(&list)->data)));
 int *num = malloc(sizeof(int));
 srand(time(NULL));
 int p = rand() % (list_size(&list) - 1);
 ListElmt *le;
 for(int i = 0; i < p; i++)
 {
 if(!i)
 le = NULL;
 else if(i == 1)
 le = list_head(&list);
 else
 le = list_next(le);
 }
 list_rem_next(&list, le, (void**)&num);
 printf("list_rem_next => %d\n", *(int*)num);
 free(num); // ici se trouve l'erreur
 return 0;
 }

comme indiqué dans la fonction main, c'est au niveau de la libération du pointeur "num" que se situe l'erreur. Tout ça parce que je récupère sa valeur depuis "list_rem_next" où il prend le data (du nœud que je retire) qui est stocké dans un void*… Il y a certainement un problème d'alignement! Mais cet algorithme est censé fonctionner, alors je me dis que c'est moi qui n'ai pas compris quelque chose.

Si quelqu'un pouvait me venir en aide, ce serait chouette!!

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

