

Forum Programmation.c libtheora

Posté par fog2100 le 08 décembre 2010 à 15:31.

Étiquettes :
aucune

	
Bonjour,

J'ai modifié le fichier examples/png2theora.c de la bibliothèque libtheora afin de pouvoir encoder un sldeshow de fichiers png avec une durée attribuée à chaque slide.

La modif fonctionnait bien dans sa première version, mais maintenant j'ai des soucis dans la deuxième version.

Le message d'erreur affiché par le programme:

Could not set keyframe interval to 64.

Internal Theora library error.

Je ne sais pas de quoi il s'agit.

/**

 * *

 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *

 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *

 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *

 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *

 * *

 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009,2009 *

 * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *

 * *

 **

 function: example encoder application; makes an Ogg Theora

 file from a sequence of png images

 last mod: $Id: png2theora.c 16503 2009-08-22 18:14:02Z giles $

 based on code from Vegard Nossum

 **/

#define _FILE_OFFSET_BITS 64

#include <errno.h>

#include <getopt.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <time.h>

#include <math.h>

#include <libgen.h>

#include <sys/types.h>

#include <dirent.h>

#ifdef HAVE_CONFIG_H

include <config.h>

#endif

#include <png.h>

#include <ogg/ogg.h>

#include "theora/theoraenc.h"

#define PROGRAM_NAME "png2theora"

#define PROGRAM_VERSION "1.1"

static const char *option_output = NULL;

static int video_fps_numerator = 24;

static int video_fps_denominator = 1;

static int video_aspect_numerator = 0;

static int video_aspect_denominator = 0;

static int video_rate = -1;

static int video_quality = -1;

ogg_uint32_t keyframe_frequency = 0;

int buf_delay = -1;

int vp3_compatible = 0;

static int chroma_format = TH_PF_420;

static FILE *twopass_file = NULL;

static int twopass = 0;

static int passno;

static FILE *ogg_fp = NULL;

static ogg_stream_state ogg_os;

static ogg_packet op;

static ogg_page og;

static th_enc_ctx *td;

static th_info ti;

static char *input_filter;

const char *optstring = "o:t:hv:\4:\2:V:s:S:f:F:ck:d:\1\2\3\4\5\6";

struct option options[] = { { "output", required_argument, NULL, 'o' }, {

		"time", required_argument, NULL, 't' }, { "help", no_argument, NULL,

		'h' }, { "chroma-444", no_argument, NULL, '\5' }, { "chroma-422",

		no_argument, NULL, '\6' }, { "video-rate-target", required_argument,

		NULL, 'V' }, { "video-quality", required_argument, NULL, 'v' }, {

		"aspect-numerator", required_argument, NULL, 's' }, {

		"aspect-denominator", required_argument, NULL, 'S' }, {

		"framerate-numerator", required_argument, NULL, 'f' }, {

		"framerate-denominator", required_argument, NULL, 'F' }, {

		"vp3-compatible", no_argument, NULL, 'c' }, { "soft-target",

		no_argument, NULL, '\1' }, { "keyframe-freq", required_argument, NULL,

		'k' }, { "buf-delay", required_argument, NULL, 'd' }, { "two-pass",

		no_argument, NULL, '\2' }, { "first-pass", required_argument, NULL,

		'\3' }, { "second-pass", required_argument, NULL, '\4' }, { NULL, 0,

		NULL, 0 } };

static void usage(void) {

	fprintf(

			stderr,

			"%s %s\n"

				"Usage: %s [options] \n\n"

				"The input argument uses C printf format to represent a list of files,\n"

				" i.e. file-%%06d.png to look for files file000001.png to file9999999.png \n\n"

				"Options: \n\n"

				" -o --output <filename.ogv> file name for encoded output (required);\n"

				" -v --video-quality Theora quality selector fro 0 to 10\n"

				" -t --time Time in frame count\n"

				" (0 yields smallest files but lowest\n"

				" video quality. 10 yields highest\n"

				" fidelity but large files)\n\n"

				" -V --video-rate-target bitrate target for Theora video\n\n"

				" --soft-target Use a large reservoir and treat the rate\n"

				" as a soft target; rate control is less\n"

				" strict but resulting quality is usually\n"

				" higher/smoother overall. Soft target also\n"

				" allows an optional -v setting to specify\n"

				" a minimum allowed quality.\n\n"

				" --two-pass Compress input using two-pass rate control\n"

				" This option performs both passes automatically.\n\n"

				" --first-pass Perform first-pass of a two-pass rate\n"

				" controlled encoding, saving pass data to\n"

				" for a later second pass\n\n"

				" --second-pass Perform second-pass of a two-pass rate\n"

				" controlled encoding, reading first-pass\n"

				" data from . The first pass\n"

				" data must come from a first encoding pass\n"

				" using identical input video to work\n"

				" properly.\n\n"

				" -k --keyframe-freq Keyframe frequency\n"

				" -d --buf-delay Buffer delay (in frames). Longer delays\n"

				" allow smoother rate adaptation and provide\n"

				" better overall quality, but require more\n"

				" client side buffering and add latency. The\n"

				" default value is the keyframe interval for\n"

				" one-pass encoding (or somewhat larger if\n"

				" --soft-target is used) and infinite for\n"

				" two-pass encoding.\n"

				" --chroma-444 Use 4:4:4 chroma subsampling\n"

				" --chroma-422 Use 4:2:2 chroma subsampling\n"

				" (4:2:0 is default)\n\n"

				" -s --aspect-numerator Aspect ratio numerator, default is 0\n"

				" -S --aspect-denominator Aspect ratio denominator, default is 0\n"

				" -f --framerate-numerator Frame rate numerator\n"

				" -F --framerate-denominator Frame rate denominator\n"

				" The frame rate nominator divided by this\n"

				" determines the frame rate in units per tick\n",

			PROGRAM_NAME, PROGRAM_VERSION, PROGRAM_NAME);

	exit(0);

}

#ifdef WIN32

int

alphasort (const void *a, const void *b)

{

	return strcoll ((*(const struct dirent **) a)->d_name,

			(*(const struct dirent **) b)->d_name);

}

int

scandir (const char *dir, struct dirent ***namelist,

		int (*select)(const struct dirent *), int (*compar)(const void *, const void *))

{

	DIR *d;

	struct dirent *entry;

	register int i=0;

	size_t entrysize;

	if ((d=opendir(dir)) == NULL)

	return(-1);

	*namelist=NULL;

	while ((entry=readdir(d)) != NULL)

	{

		if (select == NULL || (select != NULL && (*select)(entry)))

		{

			*namelist=(struct dirent **)realloc((void *)(*namelist),

					(size_t)((i+1)*sizeof(struct dirent *)));

			if (*namelist == NULL) return(-1);

			entrysize=sizeof(struct dirent)-sizeof(entry->d_name)+strlen(entry->d_name)+1;

			(*namelist)[i]=(struct dirent *)malloc(entrysize);

			if ((*namelist)[i] == NULL) return(-1);

			memcpy((*namelist)[i], entry, entrysize);

			i++;

		}

	}

	if (closedir(d)) return(-1);

	if (i == 0) return(-1);

	if (compar != NULL)

	qsort((void *)(*namelist), (size_t)i, sizeof(struct dirent *), compar);

	return(i);

}

#endif

static int theora_write_frame(unsigned long w, unsigned long h,

		unsigned char *yuv, int last) {

	th_ycbcr_buffer ycbcr;

	ogg_packet op;

	ogg_page og;

	unsigned long yuv_w;

	unsigned long yuv_h;

	unsigned char *yuv_y;

	unsigned char *yuv_u;

	unsigned char *yuv_v;

	unsigned int x;

	unsigned int y;

	/* Must hold: yuv_w >= w */

	yuv_w = (w + 15) & ~15;

	/* Must hold: yuv_h >= h */

	yuv_h = (h + 15) & ~15;

	ycbcr[0].width = yuv_w;

	ycbcr[0].height = yuv_h;

	ycbcr[0].stride = yuv_w;

	ycbcr[1].width = (chroma_format == TH_PF_444) ? yuv_w : (yuv_w >> 1);

	ycbcr[1].stride = ycbcr[1].width;

	ycbcr[1].height = (chroma_format == TH_PF_420) ? (yuv_h >> 1) : yuv_h;

	ycbcr[2].width = ycbcr[1].width;

	ycbcr[2].stride = ycbcr[1].stride;

	ycbcr[2].height = ycbcr[1].height;

	ycbcr[0].data = yuv_y = malloc(ycbcr[0].stride * ycbcr[0].height);

	ycbcr[1].data = yuv_u = malloc(ycbcr[1].stride * ycbcr[1].height);

	ycbcr[2].data = yuv_v = malloc(ycbcr[2].stride * ycbcr[2].height);

	for (y = 0; y < h; y++) {

		for (x = 0; x < w; x++) {

			yuv_y[x + y * yuv_w] = yuv[3 * (x + y * w) + 0];

		}

	}

	if (chroma_format == TH_PF_420) {

		for (y = 0; y < h; y += 2) {

			for (x = 0; x < w; x += 2) {

				yuv_u[(x >> 1) + (y >> 1) * (yuv_w >> 1)] = yuv[3 * (x + y * w)

						+ 1];

				yuv_v[(x >> 1) + (y >> 1) * (yuv_w >> 1)] = yuv[3 * (x + y * w)

						+ 2];

			}

		}

	} else if (chroma_format == TH_PF_444) {

		for (y = 0; y < h; y++) {

			for (x = 0; x < w; x++) {

				yuv_u[x + y * ycbcr[1].stride] = yuv[3 * (x + y * w) + 1];

				yuv_v[x + y * ycbcr[2].stride] = yuv[3 * (x + y * w) + 2];

			}

		}

	} else { /* TH_PF_422 */

		for (y = 0; y < h; y += 1) {

			for (x = 0; x < w; x += 2) {

				yuv_u[(x >> 1) + y * ycbcr[1].stride]

						= yuv[3 * (x + y * w) + 1];

				yuv_v[(x >> 1) + y * ycbcr[2].stride]

						= yuv[3 * (x + y * w) + 2];

			}

		}

	}

	/* Theora is a one-frame-in,one-frame-out system; submit a frame

	 for compression and pull out the packet */

	/* in two-pass mode's second pass, we need to submit first-pass data */

	if (passno == 2) {

		int ret;

		for (;;) {

			static unsigned char buffer[80];

			static int buf_pos;

			int bytes;

			/*Ask the encoder how many bytes it would like.*/

			bytes = th_encode_ctl(td, TH_ENCCTL_2PASS_IN, NULL, 0);

			if (bytes < 0) {

				fprintf(stderr, "Error submitting pass data in second pass.\n");

				exit(1);

			}

			/*If it's got enough, stop.*/

			if (bytes == 0)

				break;

			/*Read in some more bytes, if necessary.*/

			if (bytes > 80 - buf_pos)

				bytes = 80 - buf_pos;

			if (bytes > 0 && fread(buffer + buf_pos, 1, bytes, twopass_file)

					< bytes) {

				fprintf(stderr,

						"Could not read frame data from two-pass data file!\n");

				exit(1);

			}

			/*And pass them off.*/

			ret = th_encode_ctl(td, TH_ENCCTL_2PASS_IN, buffer, bytes);

			if (ret < 0) {

				fprintf(stderr, "Error submitting pass data in second pass.\n");

				exit(1);

			}

			/*If the encoder consumed the whole buffer, reset it.*/

			if (ret >= bytes)

				buf_pos = 0;

			/*Otherwise remember how much it used.*/

			else

				buf_pos += ret;

		}

	}

	if (th_encode_ycbcr_in(td, ycbcr)) {

		fprintf(stderr, "%s: error: could not encode frame\n", option_output);

		return 1;

	}

	/* in two-pass mode's first pass we need to extract and save the pass data */

	if (passno == 1) {

		unsigned char *buffer;

		int bytes = th_encode_ctl(td, TH_ENCCTL_2PASS_OUT, &buffer,

				sizeof(buffer));

		if (bytes < 0) {

			fprintf(stderr, "Could not read two-pass data from encoder.\n");

			exit(1);

		}

		if (fwrite(buffer, 1, bytes, twopass_file) < bytes) {

			fprintf(stderr, "Unable to write to two-pass data file.\n");

			exit(1);

		}

		fflush(twopass_file);

	}

	if (!th_encode_packetout(td, last, &op)) {

		fprintf(stderr, "%s: error: could not read packets\n", option_output);

		return 1;

	}

	if (passno != 1) {

		ogg_stream_packetin(&ogg_os, &op);

		while (ogg_stream_pageout(&ogg_os, &og)) {

			fwrite(og.header, og.header_len, 1, ogg_fp);

			fwrite(og.body, og.body_len, 1, ogg_fp);

		}

	}

	free(yuv_y);

	free(yuv_u);

	free(yuv_v);

	return 0;

}

static unsigned char clamp(double d) {

	if (d < 0)

		return 0;

	if (d > 255)

		return 255;

	return d;

}

static void rgb_to_yuv(png_bytep *png, unsigned char *yuv, unsigned int w,

		unsigned int h) {

	unsigned int x;

	unsigned int y;

	for (y = 0; y < h; y++) {

		for (x = 0; x < w; x++) {

			png_byte r;

			png_byte g;

			png_byte b;

			r = png[y][3 * x + 0];

			g = png[y][3 * x + 1];

			b = png[y][3 * x + 2];

			/* XXX: Cringe. */

			yuv[3 * (x + w * y) + 0] = clamp(0.299 * r + 0.587 * g + 0.114 * b);

			yuv[3 * (x + w * y) + 1] = clamp((0.436 * 255 - 0.14713 * r

					- 0.28886 * g + 0.436 * b) / 0.872);

			yuv[3 * (x + w * y) + 2] = clamp((0.615 * 255 + 0.615 * r - 0.51499

					* g - 0.10001 * b) / 1.230);

		}

	}

}

static int png_read(const char *pathname, unsigned int *w, unsigned int *h,

		unsigned char **yuv) {

	FILE *fp;

	unsigned char header[8];

	png_structp png_ptr;

	png_infop info_ptr;

	png_infop end_ptr;

	png_bytep row_data;

	png_bytep *row_pointers;

	png_color_16p bkgd;

	png_uint_32 width;

	png_uint_32 height;

	int bit_depth;

	int color_type;

	int interlace_type;

	int compression_type;

	int filter_method;

	png_uint_32 y;

	fp = fopen(pathname, "rb");

	if (!fp) {

		fprintf(stderr, "%s: error: %s\n", pathname, strerror(errno));

		return 1;

	}

	fread(header, 1, 8, fp);

	if (png_sig_cmp(header, 0, 8)) {

		fprintf(stderr, "%s: error: %s\n", pathname, "not a PNG");

		fclose(fp);

		return 1;

	}

	png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);

	if (!png_ptr) {

		fprintf(stderr, "%s: error: %s\n", pathname,

				"couldn't create png read structure");

		fclose(fp);

		return 1;

	}

	info_ptr = png_create_info_struct(png_ptr);

	if (!info_ptr) {

		fprintf(stderr, "%s: error: %s\n", pathname,

				"couldn't create png info structure");

		png_destroy_read_struct(&png_ptr, NULL, NULL);

		fclose(fp);

		return 1;

	}

	end_ptr = png_create_info_struct(png_ptr);

	if (!end_ptr) {

		fprintf(stderr, "%s: error: %s\n", pathname,

				"couldn't create png info structure");

		png_destroy_read_struct(&png_ptr, &info_ptr, NULL);

		fclose(fp);

		return 1;

	}

	png_init_io(png_ptr, fp);

	png_set_sig_bytes(png_ptr, 8);

	png_read_info(png_ptr, info_ptr);

	png_get_IHDR(png_ptr, info_ptr, &width, &height, &bit_depth, &color_type,

			&interlace_type, &compression_type, &filter_method);

	png_set_expand(png_ptr);

	if (bit_depth < 8)

		png_set_packing(png_ptr);

	if (bit_depth == 16)

		png_set_strip_16(png_ptr);

	if (!(color_type & PNG_COLOR_MASK_COLOR))

		png_set_gray_to_rgb(png_ptr);

	if (png_get_bKGD(png_ptr, info_ptr, &bkgd)) {

		png_set_background(png_ptr, bkgd, PNG_BACKGROUND_GAMMA_FILE, 1, 1.0);

	}

	/*Note that color_type 2 and 3 can also have alpha, despite not setting the

	 PNG_COLOR_MASK_ALPHA bit.

	 We always strip it to prevent libpng from overrunning our buffer.*/

	png_set_strip_alpha(png_ptr);

	row_data = (png_bytep) png_malloc(png_ptr, 3 * height * width * png_sizeof(

			*row_data));

	row_pointers = (png_bytep *) png_malloc(png_ptr, height * png_sizeof(

			*row_pointers));

	for (y = 0; y < height; y++) {

		row_pointers[y] = row_data + y * (3 * width);

	}

	png_read_image(png_ptr, row_pointers);

	png_read_end(png_ptr, end_ptr);

	*w = width;

	*h = height;

	*yuv = malloc(*w * *h * 3);

	rgb_to_yuv(row_pointers, *yuv, *w, *h);

	png_free(png_ptr, row_pointers);

	png_free(png_ptr, row_data);

	png_destroy_read_struct(&png_ptr, &info_ptr, &end_ptr);

	fclose(fp);

	return 0;

}

static int include_files(const struct dirent *de) {

	char name[1024];

	int number = -1;

	sscanf(de->d_name, input_filter, &number);

	sprintf(name, input_filter, number);

	return !strcmp(name, de->d_name);

}

static int ilog(unsigned _v) {

	int ret;

	for (ret = 0; _v; ret++)

		_v >>= 1;

	return ret;

}

static int current_index = 0; // argument index

static struct dirent ** current_dirent; // files array for argument index

static int dir_index = 0; // files array index

static int dir_count = 0; // files array length

static int n = 0; // files array length

static char *input_directory; // files array string

static struct dirent **png_files; // files list

static char ** argv;

static int first_step = 1;

void init_filelist(const char ** arglist) {

	argv = arglist;

	current_index = optind;

}

void init_dirent(const char *input_png) {

	char *input_mask;

	const char *scratch;

	input_mask = argv[current_index];

	current_index++;

	if (!input_mask) {

		fprintf(stderr, "505 no input files specified; run with -h for help.\n");

		exit(1);

	}

	/* dirname and basename must operate on scratch strings */

	scratch = strdup(input_mask);

	input_directory = strdup(dirname(scratch));

	free(scratch);

	scratch = strdup(input_mask);

	input_filter = strdup(basename(scratch));

	free(scratch);

	fprintf(stderr, "Input directory: %s\n", input_directory);

	n = scandir(input_directory, &png_files, include_files, alphasort);

	if (!n) {

		fprintf(stderr, "518 no input files found; run with -h for help.\n");

		exit(1);

	}

	dir_count = n;

	snprintf(input_png, 1023, "%s/%s", input_directory,

			png_files[dir_index]->d_name);

}

int nextdirectory(const char * input_png) {

	if (dir_index >= dir_count) {

		if (current_index < optind) {

			init_dirent(input_png);

			dir_index = 0;

		} else {

			return 1;

			return 0;

		}

	}

	snprintf(input_png, 1023, "%s/%s", input_directory,

			png_files[dir_index++]->d_name);

	return 1;

}

int nextfile(unsigned int *w, unsigned int *h, th_ycbcr_buffer *ycbcr,

		const char *input_png) {

	if (first_step) {

		init_dirent(input_png);

		first_step = 0;

	}

	nextdirectory(input_png);

	fprintf(stderr, "File = %s\n", input_png);

	if (png_read(input_png, &w, &h, &ycbcr)) {

		fprintf(stderr, "could not read %s\n", input_png);

		exit(1);

	}

	fprintf(stderr, "Png read OK");

	return 1;

}

int main(int argc, char *argv[]) {

	int multi = 1;

	int c, long_option_index;

	int i;

	char *input_mask;

	char *scratch;

	th_comment tc;

	int soft_target = 0;

	int ret;

	int timeFrames = 24 * 5;

	printf("Option switch");

	while (1) {

		c = getopt_long(argc, argv, optstring, options, &long_option_index);

		if (c == EOF)

			break;

		switch (c) {

		case 'h':

			usage();

			break;

		case 'o':

			option_output = optarg;

			break;

			;

		case 'v':

			video_quality = rint(atof(optarg) * 6.3);

			if (video_quality < 0 || video_quality > 63) {

				fprintf(stderr, "Illegal video quality (choose 0 through 10)\n");

				exit(1);

			}

			video_rate = 0;

			break;

		case 'V':

			video_rate = rint(atof(optarg) * 1000);

			if (video_rate < 1) {

				fprintf(stderr, "Illegal video bitrate (choose > 0 please)\n");

				exit(1);

			}

			video_quality = 0;

			break;

		case '\1':

			soft_target = 1;

			break;

		case 'c':

			vp3_compatible = 1;

			break;

		case 'k':

			keyframe_frequency = rint(atof(optarg));

			if (keyframe_frequency < 1 || keyframe_frequency > 2147483647) {

				fprintf(stderr, "Illegal keyframe frequency\n");

				exit(1);

			}

			break;

		case 'd':

			buf_delay = atoi(optarg);

			if (buf_delay <= 0) {

				fprintf(stderr, "Illegal buffer delay\n");

				exit(1);

			}

			break;

		case 's':

			video_aspect_numerator = rint(atof(optarg));

			break;

		case 'S':

			video_aspect_denominator = rint(atof(optarg));

			break;

		case 't':

			timeFrames = (atoi(optarg));

			break;

		case 'f':

			video_fps_numerator = rint(atof(optarg));

			break;

		case 'F':

			video_fps_denominator = rint(atof(optarg));

			break;

		case '\5':

			chroma_format = TH_PF_444;

			break;

		case '\6':

			chroma_format = TH_PF_422;

			break;

		case '\2':

			twopass = 3; /* perform both passes */

			twopass_file = tmpfile();

			if (!twopass_file) {

				fprintf(stderr,

						"Unable to open temporary file for twopass data\n");

				exit(1);

			}

			break;

		case '\3':

			twopass = 1; /* perform first pass */

			twopass_file = fopen(optarg, "wb");

			if (!twopass_file) {

				fprintf(stderr, "Unable to open \'%s\' for twopass data\n",

						optarg);

				exit(1);

			}

			break;

		case '\4':

			twopass = 2; /* perform second pass */

			twopass_file = fopen(optarg, "rb");

			if (!twopass_file) {

				fprintf(stderr, "Unable to open twopass data file \'%s\'",

						optarg);

				exit(1);

			}

			break;

		default:

			usage();

			break;

		}

	}

	if (argc < 3) {

		usage();

	}

	if (soft_target) {

		if (video_rate <= 0) {

			fprintf(stderr,

					"Soft rate target (--soft-target) requested without a bitrate (-V).\n");

			exit(1);

		}

		if (video_quality == -1)

			video_quality = 0;

	} else {

		if (video_rate > 0)

			video_quality = 0;

		if (video_quality == -1)

			video_quality = 48;

	}

	if (keyframe_frequency <= 0) {

		/*Use a default keyframe frequency of 64 for 1-pass (streaming) mode, and

		 256 for two-pass mode.*/

		keyframe_frequency = twopass ? 256 : 64;

	}

	fprintf(stderr, "Init argument");

	init_filelist(argv);

	input_mask = argv[optind];

	if (!input_mask) {

		fprintf(stderr, "no input files specified; run with -h for help.\n");

		exit(1);

	}

	/* dirname and basename must operate on scratch strings */

	scratch = strdup(input_mask);

	input_directory = strdup(dirname(scratch));

	free(scratch);

	scratch = strdup(input_mask);

	input_filter = strdup(basename(scratch));

	free(scratch);

#ifdef DEBUG

	fprintf(stderr, "scanning %s with filter '%s'\n",

			input_directory, input_filter);

#endif

	ogg_fp = fopen(option_output, "wb");

	if (!ogg_fp) {

		fprintf(stderr, "%s: error: %s\n", option_output,

				"couldn't open output file");

		return 1;

	}

	srand(time(NULL));

	if (ogg_stream_init(&ogg_os, rand())) {

		fprintf(stderr, "%s: error: %s\n", option_output,

				"couldn't create ogg stream state");

		return 1;

	}

	for (passno = (twopass == 3 ? 1 : twopass); passno <= (twopass == 3 ? 2

			: twopass); passno++) {

		unsigned int w;

		unsigned int h;

		unsigned char *yuv;

		char input_png[1024];

		int frameIndex = 0;

		th_ycbcr_buffer ycbcr;

		ycbcr[0].data = 0;

		int last = 0;

		fprintf(stderr, "Call to next file");

		nextfile(&w, &h, &ycbcr, input_png);

		if (passno != 2)

			fprintf(stderr, "%d frames, %dx%d\n", n, w, h);

		/* setup complete. Raw processing loop */

		switch (passno) {

		case 0:

		case 2:

			fprintf(stderr,

					"\rCompressing.... \n");

			break;

		case 1:

			fprintf(stderr,

					"\rScanning first pass.... \n");

			break;

		}

		fprintf(stderr, "%s\n", input_png);

		th_info_init(&ti);

		ti.frame_width = ((w + 15) >> 4) << 4;

		ti.frame_height = ((h + 15) >> 4) << 4;

		ti.pic_width = w;

		ti.pic_height = h;

		ti.pic_x = 0;

		ti.pic_y = 0;

		ti.fps_numerator = video_fps_numerator;

		ti.fps_denominator = video_fps_denominator;

		ti.aspect_numerator = video_aspect_numerator;

		ti.aspect_denominator = video_aspect_denominator;

		ti.colorspace = TH_CS_UNSPECIFIED;

		ti.pixel_fmt = chroma_format;

		ti.target_bitrate = video_rate;

		ti.quality = video_quality;

		ti.keyframe_granule_shift = ilog(keyframe_frequency - 1);

		td = th_encode_alloc(&ti);

		th_info_clear(&ti);

		/* setting just the granule shift only allows power-of-two keyframe

		 spacing. Set the actual requested spacing. */

		ret = th_encode_ctl(td, TH_ENCCTL_SET_KEYFRAME_FREQUENCY_FORCE,

				&keyframe_frequency, sizeof(keyframe_frequency - 1));

		if (ret < 0) {

			fprintf(stderr, "Could not set keyframe interval to %d.\n",

					(int) keyframe_frequency);

		}

		if (vp3_compatible) {

			ret = th_encode_ctl(td, TH_ENCCTL_SET_VP3_COMPATIBLE,

					&vp3_compatible, sizeof(vp3_compatible));

			if (ret < 0 || !vp3_compatible) {

				fprintf(stderr, "Could not enable strict VP3 compatibility.\n");

				if (ret >= 0) {

					fprintf(stderr,

							"Ensure your source format is supported by VP3.\n");

					fprintf(stderr,

							"(4:2:0 pixel format, width and height multiples of 16).\n");

				}

			}

		}

		if (soft_target) {

			/* reverse the rate control flags to favor a 'long time' strategy */

			int arg = TH_RATECTL_CAP_UNDERFLOW;

			ret

					= th_encode_ctl(td, TH_ENCCTL_SET_RATE_FLAGS, &arg,

							sizeof(arg));

			if (ret < 0)

				fprintf(stderr,

						"Could not set encoder flags for --soft-target\n");

			/* Default buffer control is overridden on two-pass */

			if (!twopass && buf_delay < 0) {

				if ((keyframe_frequency * 7 >> 1) > 5 * video_fps_numerator

						/ video_fps_denominator)

					arg = keyframe_frequency * 7 >> 1;

				else

					arg = 5 * video_fps_numerator / video_fps_denominator;

				ret = th_encode_ctl(td, TH_ENCCTL_SET_RATE_BUFFER, &arg,

						sizeof(arg));

				if (ret < 0)

					fprintf(stderr,

							"Could not set rate control buffer for --soft-target\n");

			}

		}

		/* set up two-pass if needed */

		if (passno == 1) {

			unsigned char *buffer;

			int bytes;

			bytes = th_encode_ctl(td, TH_ENCCTL_2PASS_OUT, &buffer,

					sizeof(buffer));

			if (bytes < 0) {

				fprintf(stderr,

						"Could not set up the first pass of two-pass mode.\n");

				fprintf(stderr,

						"Did you remember to specify an estimated bitrate?\n");

				exit(1);

			}

			/*Perform a seek test to ensure we can overwrite this placeholder data at

			 the end; this is better than letting the user sit through a whole

			 encode only to find out their pass 1 file is useless at the end.*/

			if (fseek(twopass_file, 0, SEEK_SET) < 0) {

				fprintf(stderr, "Unable to seek in two-pass data file.\n");

				exit(1);

			}

			if (fwrite(buffer, 1, bytes, twopass_file) < bytes) {

				fprintf(stderr, "Unable to write to two-pass data file.\n");

				exit(1);

			}

			fflush(twopass_file);

		}

		if (passno == 2) {

			/*Enable the second pass here.

			 We make this call just to set the encoder into 2-pass mode, because

			 by default enabling two-pass sets the buffer delay to the whole file

			 (because there's no way to explicitly request that behavior).

			 If we waited until we were actually encoding, it would overwite our

			 settings.*/

			if (th_encode_ctl(td, TH_ENCCTL_2PASS_IN, NULL, 0) < 0) {

				fprintf(stderr,

						"Could not set up the second pass of two-pass mode.\n");

				exit(1);

			}

			if (twopass == 3) {

				if (fseek(twopass_file, 0, SEEK_SET) < 0) {

					fprintf(stderr, "Unable to seek in two-pass data file.\n");

					exit(1);

				}

			}

		}

		/*Now we can set the buffer delay if the user requested a non-default one

		 (this has to be done after two-pass is enabled).*/

		if (passno != 1 && buf_delay >= 0) {

			ret = th_encode_ctl(td, TH_ENCCTL_SET_RATE_BUFFER, &buf_delay,

					sizeof(buf_delay));

			if (ret < 0) {

				fprintf(stderr,

						"Warning: could not set desired buffer delay.\n");

			}

		}

		/* write the bitstream header packets with proper page interleave */

		th_comment_init(&tc);

		/* first packet will get its own page automatically */

		if (th_encode_flushheader(td, &tc, &op) <= 0) {

			fprintf(stderr, "Internal Theora library error.\n");

			exit(1);

		}

		th_comment_clear(&tc);

		if (passno != 1) {

			ogg_stream_packetin(&ogg_os, &op);

			if (ogg_stream_pageout(&ogg_os, &og) != 1) {

				fprintf(stderr, "Internal Ogg library error.\n");

				exit(1);

			}

			fwrite(og.header, 1, og.header_len, ogg_fp);

			fwrite(og.body, 1, og.body_len, ogg_fp);

		}

		/* create the remaining theora headers */

		for (;;) {

			ret = th_encode_flushheader(td, &tc, &op);

			if (ret < 0) {

				fprintf(stderr, "Internal Theora library error.\n");

				exit(1);

			} else if (!ret)

				break;

			if (passno != 1)

				ogg_stream_packetin(&ogg_os, &op);

		}

		/* Flush the rest of our headers. This ensures

		 the actual data in each stream will start

		 on a new page, as per spec. */

		if (passno != 1) {

			for (;;) {

				int result = ogg_stream_flush(&ogg_os, &og);

				if (result < 0) {

					/* can't get here */

					fprintf(stderr, "Internal Ogg library error.\n");

					exit(1);

				}

				if (result == 0)

					break;

				fwrite(og.header, 1, og.header_len, ogg_fp);

				fwrite(og.body, 1, og.body_len, ogg_fp);

			}

		}

		int lastfile = 0;

		while (1) {

			i = 0;

			last = 0;

			do {

				frameIndex = 0;

				while (frameIndex < timeFrames) {

					if (i >= dir_index - 1 && frameIndex == timeFrames - 1

							&& lastfile)

						last = 1;

					if (theora_write_frame(w, h, ycbcr, last)) {

						fprintf(stderr, "Encoding error.\n");

						exit(1);

					}

					printf("Frame no %d\n", frameIndex++);

				}

				free(ycbcr);

				i++;

				if (!lastfile) {

					lastfile = nextfile(&w, &h, &ycbcr, input_png);

				}

			} while (!last);

		}

		if (passno == 1) {

			/* need to read the final (summary) packet */

			unsigned char *buffer;

			int bytes = th_encode_ctl(td, TH_ENCCTL_2PASS_OUT, &buffer,

					sizeof(buffer));

			if (bytes < 0) {

				fprintf(stderr,

						"Could not read two-pass summary data from encoder.\n");

				exit(1);

			}

			if (fseek(twopass_file, 0, SEEK_SET) < 0) {

				fprintf(stderr, "Unable to seek in two-pass data file.\n");

				exit(1);

			}

			if (fwrite(buffer, 1, bytes, twopass_file) < bytes) {

				fprintf(stderr, "Unable to write to two-pass data file.\n");

				exit(1);

			}

			fflush(twopass_file);

		}

	}

	th_encode_free(td);

	if (ogg_stream_flush(&ogg_os, &og)) {

		fwrite(og.header, og.header_len, 1, ogg_fp);

		fwrite(og.body, og.body_len, 1, ogg_fp);

	}

	free(input_directory);

	free(input_filter);

	while (n--)

		free(png_files[n]);

	free(png_files);

	if (ogg_fp) {

		fflush(ogg_fp);

		if (ogg_fp != stdout)

			fclose(ogg_fp);

	}

	ogg_stream_clear(&ogg_os);

	if (twopass_file)

		fclose(twopass_file);

	fprintf(stderr, "\r \ndone.\n\n");

	return 0;

}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

