

Forum Programmation.c Parallelisation d'une boucle (théoriquement) trivialement parallélisable

Posté par berti le 05 novembre 2010 à 18:07.

Étiquettes :

	fortran

	Bonjour,

Je dois effectuer un nombre très important de fois la boucle suivante avec un contrainte très forte sur le temps d'exécution:

	for(i = 0 ; i < N ; i++){

		yvar1[i] = yvar1[i] + yvar2[i] + yvar3[i];

		yvar2[i] = yvar2[i] + 2.0 * yvar3[i];

	}

où N est proche de 130000 et yvar* est un tableau de double.

Ce calcul est théoriquement trivialement parallélisable mais malheureusemnt je n'obtiens pas un bon speedup avec plus de deux threads. C'est probablement dû au fait que N n'est pas si grand et qu'on effectue beaucoup de lecture/écriture par rapport au nombre de calcul.

Avec le test suivant (http://codeviewer.org/view/code:1397)

compilé avec "cc -O3 -lpthread testPred.c -o testPred"

sur un "biprocesseur-quadricore-hyperthreadé (i.e. 16 coeurs logiques) Intel(R) Xeon(R) CPU E5530 @ 2.40GHz" j'obtiens les temps suivant:

[DEK328@PEGASE08 testParall]$./compile.sh && ./testPred

inplace sequential prediction : 0.440000 ms

inplace sequential prediction += : 0.356000 ms

outplace sequential prediction : 1.003000 ms

inplace parallel prediction += using 1 threads: 0.798000 ms

inplace parallel prediction += using 2 threads: 0.304000 ms

inplace parallel prediction += using 4 threads: 0.430000 ms

inplace parallel prediction += using 8 threads: 0.425000 ms

inplace parallel prediction += using 16 threads: 0.662000 ms

outplace parallel prediction using 1 threads: 0.475000 ms

outplace parallel prediction using 2 threads: 0.284000 ms

outplace parallel prediction using 4 threads: 0.414000 ms

outplace parallel prediction using 8 threads: 0.488000 ms

outplace parallel prediction using 16 threads: 0.577000 ms

On constate que dès qu'il y a plus de 2 threads, le speedup est très mauvais (même avec la version "outplace" où l'on ne devrait pas avoir de falsesharing). La meilleur combinaison mène à un temps de 0.28ms qui est malheureusement toujours trop élevé pour mes besoins.

On a constaté le même genre de mesure en utilisant d'autre langage (intel Fortran et OpenMP).

Plusieurs questions:

	 qu'est-ce qui explique ce si mauvais speedup ?.

	 y-a-t'il une autre technique qui améliorerait les performances ? Presque toutes les options sont ouvertes (hardware, algorithmiques, langages...)

	 pourquoi est-ce que la version avec "yvar1[i] = yvar1[i] + ... " est moins performante que celle avec "yvar1[i] += ..." ? Le compilateur n'est-il pas assez intelligent pour remarquer que c'est la même chose ?

	 par ailleurs connaîtriez-vous d'autres sites/forum où l'on s'intéresse à ce genre de question ?

Merci d'avance pour vos suggestions.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

