

Forum Programmation.c passer une struct dans une shared memory POSIX

Posté par cobbleguard le 13 avril 2005 à 23:47.

Étiquettes :
aucune

Salut,

j'ai un probleme pour faire passer et recuperer une structure dans une shared memory POSIX.

J'ai 3 process (pour l'instant) : PS1 recoit des donnees saisies au clavier , les met dans une structure et la passe au PS2 par un tube nommé (jusque la pas de prob).

PS2 ouvre et mappe une shared memory et y passe la structure recuperee sur le tube

PS3 recupere la structure dans la shared memory et affiche le resultat

Les 3 ps passent bien la compilation, la comm est ok entre ps1 et ps2 mais a l'execution PS3 se met en erreur de segmentation (dumped core).

Ce code est compile et execute sur un alpha Tru64 v4.0

quelqu'un a une idee?

[code] PS2

/*___________________________________DECLARATIONS POUR MEMOIRE PARTAGEE GLOBLALE_____*/

int shm_etage1;

int shm_etage2;

caddr_t shm_ptr1;

//caddr_t shm_ptr2;

main (int argc, char *argv[])

{

printf("\n\t\tPROGRAMME PRINCIPAL");

int lire;

char lettre = 'A';

int i;

struct transport trajet;

int t=1;

trajet.actuel=0;

trajet.dest=0;

trajet.NB_pass=0;

lire = open("tube", O_RDONLY);

shm_etage1 = shm_open ("/tmp/etage1", (O_CREAT | O_RDWR), 0);

// shm_etage2 = shm_open ("/tmp/etage2", (O_CREAT | O_RDWR), 0);

ret_val = fchmod (shm_etage1 , (mode_t) S_IRWXG | S_IRWXU | S_IRWXO);

// ret_val = fchmod (shm_etage2 , (mode_t) S_IRWXG | S_IRWXU | S_IRWXO);

ret_val = ftruncate (shm_etage1, sizeof(struct transport));

// ret_val = ftruncate (shm_etage2, sizeof(struct transport));

shm_ptr1 = mmap ((caddr_t) 0, sizeof(struct transport), PROT_WRITE|PROT_READ, MAP_SHARED, shm_etage1, 0);

// shm_ptr2 = mmap ((caddr_t) 0, sizeof(struct transport), PROT_WRITE|PROT_READ, MAP_SHARED, shm_etage2, 0);

while(trajet.NB_pass != -1)

{

read(lire,(char*) &trajet,sizeof(struct transport));

printf("\nTrajet %d : %d passagers vont de l'etage %d a l'etage %d", t++, trajet.NB_pass, trajet.actuel, trajet.dest);

struct transport shm_ptr1= trajet;

}

//close("tube");

printf("\nFIN PROGRAMME");

ret_val = munmap (shm_ptr1 , sizeof(struct transport));

//ret_val = munmap (shm_ptr2 , sizeof(struct transport));

ret_val = close (shm_etage1);

//ret_val = close (shm_etage2);

ret_val = shm_unlink ("/tmp/etage1");

//ret_val = shm_unlink ("/tmp/etage2");

}

code PS3

/*___________________________________DECLARATIONS POUR MEMOIRE PARTAGEE GLOBLALE_____*/

int shm_etage1;

int shm_etage2;

caddr_t shm_ptr1;

main (int argc, char *argv[])

{

struct transport* transp_shm_ptr1 = (struct transport*) shm_ptr1;

struct transport trajet;

shm_etage1 = shm_open ("/tmp/etage1", (O_RDWR), 0);

shm_ptr1 = mmap ((caddr_t) 0, 3, PROT_READ, MAP_SHARED, shm_etage1, 0);

sleep(2);

trajet = *transp_shm_ptr1;

//trajet = *shm_ptr1;

printf("actuel %d, dest %d, nbpass %d", trajet.actuel, trajet.dest, trajet.NB_pass);

//printf("\n en memoire : %c", d);

ret_val = munmap (shm_ptr1 , 3);

ret_val = close (shm_etage1);

}

PS1 n'a pas d'interet

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

