

Forum Programmation.c Problème Interface série

Posté par yarmas le 20 mai 2007 à 15:12.

Étiquettes :
aucune

Bonjour,

J'ai un probleme d'interfaçage via port série d'un materiél numérique...

Voici le protocol correct... (WRITE pour écriture et READ pour lecture)

WRITE 02

READ 10

WRITE 01 00 03 02 10 03

READ 10 02

WRITE 10

READ 01 00 3A 02 ... 10 03

WRITE 10 02

READ 10

Voici malheureusement le meilleur résultat que je puisse obtenir

WRITE 02

READ 66

WRITE 01 00 03 02 10 03

Bref je ne vais pas bien loin...

Je sais que mon problème se trouve dans la définition de la communication (vitesse, parite, stop bits...)

Quelqu'un peut-il me dire comment me sortir de ce mauvais pas?

A titre indicatif... Voici le code qui gère la communication serielle

static int fd = 0;

static struct termios saved_termios;

int OpenAdrPort(char* sPortNumber)

{

	char sPortName[64];

	sprintf(sPortName, "/dev/%s", sPortNumber);

	if (fd != 0)

	{

		CloseAdrPort(fd);

	}

	fd = open(sPortName, O_RDWR | O_NOCTTY);// | O_NDELAY

	if (fd < 0)

	{

		printf("open error %d %s\n", errno, strerror(errno));

	}

	else

	{

		struct termios my_termios;

		tcgetattr(fd, &saved_termios);

		memcpy(&my_termios, &saved_termios, sizeof(struct termios));

		my_termios.c_cflag = CS8 | CLOCAL | CWRITE | CRTSCTS;

		my_termios.c_iflag = IGNPAR;

		my_termios.c_oflag = 0;

		my_termios.c_lflag = 0;

		my_termios.c_cc[VINTR] = 0;

		my_termios.c_cc[VQUIT] = 0;

		my_termios.c_cc[VERASE] = 0;

		my_termios.c_cc[VKILL] = 0;

		my_termios.c_cc[VEOF] = 4;

		my_termios.c_cc[VTIME] = 0;

		my_termios.c_cc[VMIN] = 1;

		my_termios.c_cc[VSWTC] = 0;

		my_termios.c_cc[VSTART] = 0;

		my_termios.c_cc[VSTOP] = 0;

		my_termios.c_cc[VSUSP] = 0;

		my_termios.c_cc[VEOL] = 0;

		my_termios.c_cc[VREPRINT] = 0;

		my_termios.c_cc[VDISCARD] = 0;

		my_termios.c_cc[VWERASE] = 0;

		my_termios.c_cc[VLNEXT] = 0;

		my_termios.c_cc[VEOL2] = 0;

		tcflush(fd, TCIOFLUSH);

		cfsetospeed(&my_termios, B19200);

		cfsetispeed(&my_termios, B19200);

		if (tcsetattr(fd, TCSANOW, &my_termios) != 0)

		{

			return -1;

		}

	}

	return fd;

}

int WriteAdrPort(void* psOutput, int iSize)

{

	int iOut;

	if (fd < 1)

	{

		printf(" port is not open\n");

		return -1;

	}

	tcflush(fd, TCIOFLUSH);

	iOut = write(fd, psOutput, iSize);

	if (iOut < 0)

	{

		printf("write error %d %s\n", errno, strerror(errno));

	}

	else

	{

		int i;

		const char * Buf = psOutput;

		printf("<\t");

		for (i = 0; i < iOut; ++i)

		{

			printf("%02X ", Buf[i]);

		}

		printf("\n");

		fflush(stdout);

	}

	return iOut;

}

int ReadAdrPort(void* psResponse, int iMax)

{

	int iIn;

	int iBuf = iMax;

	void* Buf;

	int retval;

	fd_set rfds;

	struct timeval tv;

	if (fd < 1)

	{

		printf(" port is not open\n");

		return -1;

	}

	Buf = psResponse;

	FD_ZERO(&rfds);

	FD_SET(fd, &rfds);

	tv.tv_sec = 5;

	tv.tv_usec = 0;

	while (iMax > 0)

	{

		retval = select(16, &rfds, NULL, NULL, &tv);

		iIn = read(fd, Buf, iMax);

		if (iIn < 0)

		{

			if (errno == EAGAIN)

			{

				return 0;

			}

			else

			{

				printf("read error %d %s\n", errno, strerror(errno));

				return -1;

			}

		}

		else

		{

			Buf += iIn;

			iMax -= iIn;

		}

	}

	int i;

	const char * Buff = psResponse;

	printf(">\t");

	for (i = 0; i < iBuf; ++i)

	{

		printf("%02X ", Buff[i]);

	}

	printf("\n");

	fflush(stdout);

	return iIn;

}

void CloseAdrPort()

{

	if (fd > 0)

	{

		tcflush(fd, TCIOFLUSH);

		if (tcsetattr(fd, TCSANOW, &saved_termios) != 0)

		{

			return -1;

		}

		close(fd);

	}

}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

