

Forum Programmation.c Probleme de communication UDP

Posté par Guillaume JOLI le 27 septembre 2006 à 10:01.

Étiquettes :
aucune

Salut !

J'ai un soucis: J'utilise une red hat enterprise 4 et j'essaye de faire un server/client udp.

Or lorsque j'envoie un tableau de 64Ko, seul 1000 octets sont envoyé (sendto retourne 1000). Si je compile le meme soft sous cygwin, et bien ca envoie bien 64Ko. Derniere étape: client sous cygwin et serveur sous linux => le client cygwin envoie bien 64Ko mais le serveur sous linux recoit 1000 octets (recvfrom retourne 1000).

Je ne comprends pas trop...

Voici mon code:

Serveur:

[cpp]

 /* Socket creation

 * IP protocol family(PF_INET)

 * UDP (SOCK_DGRAM)

 */

 if((socket_id = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {

 printf("! Error while creating socket !\n");

 exit(1);

 }

 memset((char*) &server, sizeof(server), 0);

 server.sin_family = AF_INET; /* Used protocol: INET */

 server.sin_addr.s_addr = INADDR_ANY; /* Any address can connect to the socket */

 server.sin_port = htons(1234); /* setup the probing port*/

 /* Connect to the socket */

 if ((i = bind(socket_id, (struct sockaddr *)&server, sizeof(server))) < 0) {

 perror ("! Error while binding to socket !");

 exit(3);

 }

 while(1)

 {

 /* wait client connection */

 client_ln = sizeof(client);

 n_read = recvfrom(socket_id, buf, MAX_BUF, 0, (struct sockaddr *)&client, &client_ln);

	

 //pthread_mutex_lock (&mutex);

	 got = n_read;

 if((n_read < 0)) {

 printf("! Error while receiving data (n_read = %d from %s:%d) !\r", n_read, inet_ntoa(client.sin_addr), ntohs(client.sin_port));

 rerrors++;

 if (n_read < 0)

		exit(4);

 }

 else

 {

	 received += n_read;

 for(i=0;i<MAX_BUF;i++)

 {

 if (buf[i]!=(i%255))

 {

 rerrors++;

 printf("@%d => receieved: %d expected: %d \n", i, buf[i], i%255);

 }

 }

 }

 /* Now, send the answer */

 n_sent = sendto(socket_id, buf, MAX_BUF, 0, (struct sockaddr *)&client, sizeof(client));

 if(n_sent < 0)

 {

 printf("! Error while answering to %s", get_ip(client.sin_addr.s_addr));

 serrors++;

 if (n_sent < 0)

			exit(5);

 }

 else

 {

 sent += n_sent;

 }

 //pthread_mutex_unlock (&mutex);

 }

[/cpp]

Client:

[cpp]

 struct sockaddr_in server;

 struct hostent *host;

 unsigned char buf[MAX_BUF];

 int buf_len, socket_id, n_sent, n_read, i;

 u_long address;

 u_long nb_send=0, nb_read=0;

 //if (argc != 2)

 {

 printf("> Usage: %s <server name> <udp port>\n",argv[0]);

 }

 /* Socket Creation

 * IP protocol family(PF_INET)

 * UDP (SOCK_DGRAM)

 */

 if((socket_id = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {

 printf("! Error while creating UDP socket !\n");

 exit(1);

 }

 /* No need to cal bind() because we are using UDP */

 server.sin_family = AF_INET;

 /* set the connection port */

 server.sin_port = htons(1234);

 if (argc > 1)

 {

 if ((host = (struct hostent*) gethostbyname(argv[1])) == NULL) {

 printf("! Unkown host name !\n");

 exit(2);

 }

 else

 {

 /* Get host IP address */

 //address = *((u_long*)host->h_addr_list[0]);

 address = inet_addr("127.0.0.1");

 server.sin_addr.s_addr = address;

 }

 }

 else

 {

 printf("] No host specified, using localhost then...\n");

 server.sin_addr.s_addr = inet_addr("192.168.1.250");

 }

 do

 {

 /* On compose le message */

 for(i=0;i<MAX_BUF;i++)

 buf[i]= (i % 255);

 buf_len = MAX_BUF;	// remove the return char

 /* Message sent to the remote server */

 n_sent = sendto(socket_id, buf, buf_len, 0, (struct sockaddr *)&server, sizeof(server));

 if(n_sent < 0)

 {

 printf("! Error while sending the message !\n");

 exit(3);

 }

 else

 {

 nb_send+=n_sent;

 }

 /* buffer cleanning */

 //memset(buf, 0, MAX_BUF);

 /* wait for the server response */

 n_read = recvfrom(socket_id, buf, MAX_BUF, 0, NULL, NULL);

 if(n_read < 0 || n_read < 1000)

 {

 printf("! Error while retreiving the answer !\n");

 //exit(4);

 }

 else

 {

 nb_read += n_read;

 }

 if ((nb_send%(1024*1024/MAX_BUF)) == 0)

 {

 printf("] Sent %d Mo [%d]", nb_send/(1024*1024), n_sent);

		 printf("- Received %d Mo [%d] \r", nb_read/(1024*1024), n_read);

		 fflush(stdout);

		}

		

 } while (1);

[/cpp]

Si quelqu'un peut m'expliquer :jap:

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

