

Forum Programmation.c probleme pour faire un timer précis de l'ordre de la milliseconde

Posté par cosmoff le 26 janvier 2022 à 22:04.
Licence CC By‑SA.

Étiquettes :
aucune

bonjour à tous,

je souhaite faire un timer via timerfd_create qui reveille mon programme toutes les 1 milliseconde (ms). j'aimerais une erreur que de 10% soit pas plus de 1.1ms. Mon programme à un timer moyen de 1ms (super :)) mais a parfois des piques à 1,2 ms voir 1,4ms :(

Je l'ai passé en fifo priorité 99, j'ai viré toutes les interruptions venant de mon cpu8 afin d'empecher que mon processus soit interrompu (via /proc/irq/smp_affinity), j'ai bien entendu forcé mon programme via la commande taskset a etre que sur le cpu8, j'ai mis tous mes cpus en mode performance, j'ai mis la variable /proc/sys/kernel/sched_rt_runtime_us = -1

et pourtant rien à faire j'ai toujours des piques avec une erreur pouvant aller jusqu'a plus de 20%.

Je demande des idées, merci d'avance :)

PS : je précise avoir un bon PC donc il devrait tenir la charge

Je vous montre mon code ca pourra peut etre aidé:

 #include <stdio.h>
 #include <sys/timerfd.h>
 #include <errno.h>
 #include <string.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <sys/mman.h>

 #define COUNT 10001
 #define PERIODE 1000000 //1ms

 int main(int argc, char const *argv[])
 {
 int timerfd;
 if((timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC)) < 0)
 {
 printf("error timerfd : %s\n", strerror(errno));
 return -1;
 }

 struct timespec initTimer;
 if(clock_gettime(CLOCK_MONOTONIC, &initTimer) < 0)
 {
 printf("error clock_gettime : %s\n", strerror(errno));
 return -1;
 }

 struct itimerspec setTimer ;
 setTimer.it_interval.tv_sec = 0;
 setTimer.it_interval.tv_nsec = PERIODE;
 setTimer.it_value.tv_sec = initTimer.tv_sec ;
 setTimer.it_value.tv_nsec = 0;

 if(timerfd_settime(timerfd, TFD_TIMER_ABSTIME, &setTimer, NULL) < 0)
 {
 printf("error timerfd_settime : %s\n", strerror(errno));
 return -1;
 }

 struct timespec now, previous;
 long somme = 0;
 long peak = PERIODE, base = PERIODE;
 long tabTimer[COUNT];
 __uint64_t ret;

 if(mlockall(MCL_CURRENT | MCL_FUTURE) < 0)
 {
 printf("error mlockall : %s\n", strerror(errno));
 return -1;
 }

 if (clock_gettime(CLOCK_MONOTONIC, &previous) < 0)
 {
 printf("error clock_gettime : %s\n", strerror(errno));
 return -1;
 }

 for (size_t i = 0; i < COUNT; i++)
 {

 read(timerfd, &ret, sizeof(__uint64_t));

 clock_gettime(CLOCK_MONOTONIC, &now);
 tabTimer[i] = (now.tv_sec - previous.tv_sec) * 1000000000 + now.tv_nsec - previous.tv_nsec;
 previous = now;

 }

 //we write results
 for (size_t i = 1; i < COUNT; i++)
 {
 somme += tabTimer[i];
 if(tabTimer[i] > peak)
 {
 peak = tabTimer[i];
 }
 if(tabTimer[i] < base)
 {
 base = tabTimer[i];
 }
 }

 printf("average en ns = %ld, peak = %ld, base = %ld\n", somme/(COUNT - 1), peak, base);

 return 0;
 }

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

