

Forum Programmation.c++ Appeler une méthode non-const à partir de la méthode const homonyme

Posté par arnaudus le 08 janvier 2014 à 16:34.
Licence CC By‑SA.

Étiquettes :

	const

	cast

Histoire de ne pas mourir idiot, je me demandais s'il y avait un moyen élégant d'appeler une méthode const à partir de son équivalent non-const. Le contexte ressemble à ça:

#include <vector>
#include <iostream>
#include <cassert>

using namespace std;

class A {
 public:
 A(vector<double>);
 double mean();
 double mean() const;

 protected:
 void initialize();
 bool is_initialized;
 const vector<double> data;
 double sum_i;
};

A::A(vector<double> d)
 : data(d)
{
 sum_i = 0.0;
 is_initialized = false;
}

void A::initialize()
{
 for (unsigned int i = 0; i < data.size(); i++) {
 sum_i += data[i];
 }
 is_initialized = true;
}

double A::mean() const
{
 assert(is_initialized);
 return(sum_i / data.size());
}

double A::mean()
{
 if (!is_initialized) {
 initialize();
 }
 return(static_cast<const A>(*this).mean()); // <- c'est là qu'est l'os!
}

int main()
{
 vector<double> notes;
 notes.push_back(10.0);
 notes.push_back(13.0);
 notes.push_back(3.5);

 A A1(notes);
 cout << A1.mean() << endl;

 const A A2(A1);
 cout << A2.mean() << endl;

 return(0);
}

Je ne sais pas si je préfère le cast vers le const ou la duplication de code, les deux me semblent mochissimes. Est-ce une mauvaise utilisation de l'overloading sur const? J'avais pourtant l'impression que c'était légitime dans ce contexte (besoin d'un état particulier de l'objet pour exécuter la fonction; mettre l'objet en état et lancer la fonction const dans la fonction non-const, avorter l'exécution dans un contexte const si l'objet n'est pas dans le bon état).

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

