

Forum Programmation.c++ Client udp qui écoute plusieurs ports en utilisant boost

Posté par Olivier LEMAIRE (site web personnel) le 08 juin 2021 à 17:01.
Licence CC By‑SA.

Étiquettes :
aucune

Bonjour à tous,

ça fait un petit moment que je galère et je n'arrive pas à m'en sortir. Je dois

écrire un client qui reçoit des données en udp. La connexion se fait en point à

point. Mon pc à une certaine IP qui permet au serveur de me reconnaître. Les

données sont envoyées sur 5 ports différents

- 50000/54000 début/fin de daq

- 51000/53000 début/fin de tranche

- 52000 données utiles du système

J'ai besoin de récupérer toutes les données et de les écrire dans le fichier.

Préalablement j'avais fait un petit client sur un seul port et j'avais testé

avec netcat; ça fonctionnait plutôt bien. Au passage de 1 vers 5 sockets… J'y

arrive plus. L'envoie des requêtes vers le serveur fonctionne toujours

correctement mais la réception ne fonctionne pas; je n'entre jamais dans les

handlers…

Ce que je sais par contre c'est que les données sont bien envoyées car ce que je

vois ensuite à partir du paquet 6 est exactement ce que je dois recevoir.

Je n'y arrive pas, je suis perdu… Est-ce qu'une ame charitable pourrait me

mettre sur la voie ?

Merci d'avance pour votre aide.

Olivier

Ci-dessous, un extrait de ce que wireshark voit

markdown

| 1 | 0 | 192.168.0.254 | 192.168.0.1 | UDP | 50 | 49890 → 5 Len=8 | 1 |

| 2 | 1.0876E-05 | 192.168.0.254 | 192.168.0.1 | UDP | 50 | 49890 → 5 Len=8 | 2 |

| 3 | 1.3583E-05 | 192.168.0.254 | 192.168.0.1 | UDP | 50 | 49890 → 5 Len=8 | 3 |

| 4 | 1.5884E-05 | 192.168.0.254 | 192.168.0.1 | UDP | 50 | 49890 → 5 Len=8 | 4 |

| 5 | 1.7992E-05 | 192.168.0.254 | 192.168.0.1 | UDP | 50 | 49890 → 5 Len=8 | 5 |

| 6 | 4.5684E-05 | 192.168.0.1 | 192.168.0.254 | UDP | 60 | 50000 → 32776 Len=8 | 6 |

| 7 | 4.5781E-05 | 192.168.0.1 | 192.168.0.254 | UDP | 74 | 51000 → 32776 Len=32 | 7 |

| 8 | 8.7986E-05 | 192.168.0.254 | 192.168.0.1 | ICMP | 102 | Destination unreachable (Communication administratively filtered) | 8 |

| 9 | 0.000107264 | 192.168.0.1 | 192.168.0.254 | UDP | 486 | 52000 → 32776 Len=444 | 9 |

| 10 | 0.000115677 | 192.168.0.254 | 192.168.0.1 | ICMP | 514 | Destination unreachable (Communication administratively filtered) | 10 |

| 12 | 0.014089529 | 192.168.0.1 | 192.168.0.254 | UDP | 466 | 52000 → 32776 Len=424 | 12 |

| 13 | 0.014131458 | 192.168.0.254 | 192.168.0.1 | ICMP | 494 | Destination unreachable (Communication administratively filtered) | 13 |

| 14 | 0.034794761 | 192.168.0.1 | 192.168.0.254 | UDP | 474 | 52000 → 32776 Len=432 | 14 |

| 15 | 0.034836852 | 192.168.0.254 | 192.168.0.1 | ICMP | 502 | Destination unreachable (Communication administratively filtered) | 15 |

| 17 | 0.071217607 | 192.168.0.1 | 192.168.0.254 | UDP | 474 | 52000 → 32776 Len=432 | 17 |

| 18 | 0.071260595 | 192.168.0.254 | 192.168.0.1 | ICMP | 502 | Destination unreachable (Communication administratively filtered) | 18 |

| 19 | 0.080098375 | 192.168.0.1 | 192.168.0.254 | UDP | 190 | 52000 → 32776 Len=148 | 19 |

| 20 | 0.080098482 | 192.168.0.1 | 192.168.0.254 | UDP | 74 | 53000 → 32776 Len=32 | 20 |

| 21 | 0.080098503 | 192.168.0.1 | 192.168.0.254 | UDP | 74 | 51000 → 32776 Len=32 | 21 |

| 22 | 0.080149978 | 192.168.0.254 | 192.168.0.1 | ICMP | 218 | Destination unreachable (Communication administratively filtered) | 22 |

| 24 | 0.160146554 | 192.168.0.1 | 192.168.0.254 | UDP | 486 | 52000 → 32776 Len=444 | 24 |

et ici le code

#include "udp_client.hxx"
#include <iostream>
#include <fstream>
#include <functional>
#include <vector>
//#include <thread>
#include <boost/bind/bind.hpp>
#include <boost/asio.hpp>
#include <ctime>
#include <boost/date_time/posix_time/posix_time.hpp>
#include "udp_constants.hxx"
using boost::asio::ip::udp;

 udp_client::udp_client(boost::asio::io_context &io) :
 strand(boost::asio::make_strand(io)),
 socket_data(io, udp::endpoint(udp::v4(), udp_constants::ports::data)),
 socket_daq_start(io, udp::endpoint(udp::v4(), udp_constants::ports::daq_start)),
 socket_daq_stop(io, udp::endpoint(udp::v4(), udp_constants::ports::daq_stop)),
 socket_slice_start(io, udp::endpoint(udp::v4(), udp_constants::ports::slice_start)),
 socket_slice_stop(io, udp::endpoint(udp::v4(), udp_constants::ports::slice_stop)),
 socket_tx(io),
 timer{strand}
 {

 socket_daq_start.connect(udp::endpoint(boost::asio::ip::address::from_string("192.168.0.1"), 50000));
 socket_daq_stop.connect(udp::endpoint(boost::asio::ip::address::from_string("192.168.0.1"), 54000));
 socket_slice_start.connect(udp::endpoint(boost::asio::ip::address::from_string("192.168.0.1"), 51000));
 socket_slice_stop.connect(udp::endpoint(boost::asio::ip::address::from_string("192.168.0.1"), 53000));
 socket_data.connect(udp::endpoint(boost::asio::ip::address::from_string("192.168.0.1"), 52000));

 datagrams.push_back(std::vector<unsigned char>{0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
 datagrams.push_back(std::vector<unsigned char>{0x00, 0x01, 0x00, 0x01, 0x00, 0x7a, 0x11, 0xfe});
 datagrams.push_back(std::vector<unsigned char>{0x00, 0x01, 0x00, 0x02, 0x00, 0x7a, 0x11, 0xfe});
 datagrams.push_back(std::vector<unsigned char>{0x00, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00, 0x05});
 datagrams.push_back(std::vector<unsigned char>{0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01});
 set_acquisition_and_get_data(datagrams);
 filename="/home/lemaire/data.dat";
 }

 udp_client::~udp_client()
 {
 socket_daq_start.close();
 socket_slice_start.close();
 socket_slice_stop.close();
 socket_daq_stop.close();
 socket_data.close();
 // close file
 output_stream.close();
 // inform user
 std::cout << "udp server destructor" << std::endl;
 }

 /**
 * @brief udp_client::get_time_stamp
 * @return
 *
 * @note je ne sais pas pour l'instant si c'est bien pertinent mais
 * l'objet c'était d'avoir un getter...
 */
 uint64_t udp_client::get_timestamp()
 {
 return create_timestamp();
 }

 std::vector<unsigned char> udp_client::ui64_to_vector(uint64_t w)
 {
 std::vector<unsigned char> vec(8, 0x0);
 char c;
 size_t d{0};
 for(int i{0}; i<8; i++)
 {
 d = (8-1-i)*8;
 c = static_cast<unsigned char>(w >> d);
 vec[i] = c;
 }
 return vec;
 }

 bool udp_client::send_data(std::vector<std::vector<unsigned char>>& datagrams)
 {
 std::cout << __PRETTY_FUNCTION__ << std::endl;
 using udp = boost::asio::ip::udp;
 auto endpoint = udp::endpoint(
 boost::asio::ip::address::from_string(udp_constants::ip::fpga),
 udp_constants::ports::configuration);
 try
 {
 socket_tx.open(boost::asio::ip::udp::v4());
 for(auto datagram: datagrams)
 socket_tx.send_to(boost::asio::buffer(datagram), endpoint);
 socket_tx.close();
 }
 catch (const boost::system::system_error& e)
 {
 std::cout << e.what() << std::endl;
 }

 return true;
 }

 bool udp_client::set_acquisition_and_get_data(std::vector<std::vector<unsigned char>>& datagrams)
 {
 std::cout << __PRETTY_FUNCTION__ << " begin" << std::endl;
 start_receive();
 std::cout << __PRETTY_FUNCTION__ << " start receive launched" << std::endl;
 send_data(datagrams);
 std::cout << __PRETTY_FUNCTION__ << " instructions sent" << std::endl;
 return true;
 }

 void udp_client::start_receive()
 {
 std::cout << __PRETTY_FUNCTION__ << std::endl;
 output_stream.open(filename,
 std::ofstream::out |
 std::ofstream::trunc |
 std::ofstream::binary);

 std::vector<udp::endpoint> endpoints(5);
 socket_daq_start.async_receive
 (boost::asio::buffer(buffer_daq_start.data(), 16),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_daq_start,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 std::cout << __PRETTY_FUNCTION__ << " socket daq start started" << std::endl;
 // --
 socket_slice_start.async_receive
 (boost::asio::buffer(buffer_slice_start.data(), 64),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_slice_start,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 std::cout << __PRETTY_FUNCTION__ << " socket slice start started" << std::endl;
 // --
 socket_slice_stop.async_receive
 (boost::asio::buffer(buffer_slice_stop.data(), 64),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_slice_stop,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 std::cout << __PRETTY_FUNCTION__ << " socket slice stop started" << std::endl;
 // --
 socket_daq_stop.async_receive
 (boost::asio::buffer(buffer_daq_stop.data(), 16),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_daq_stop,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 std::cout << __PRETTY_FUNCTION__ << " socket slice stop started" << std::endl;
 // --
 socket_data.async_receive
 (boost::asio::buffer(buffer_data_1.data(), 16),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_data,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 std::cout << __PRETTY_FUNCTION__ << " socket data started" << std::endl;

 return;
 }

 void udp_client::handle_daq_start(const boost::system::error_code& error, // Result of operation.
 std::size_t bytes_transferred)
 {
 std::cout << __PRETTY_FUNCTION__ << std::endl;
 if(!error)
 {
 // write the data
 if(!output_stream.is_open())
 output_stream.open(filename,
 std::ofstream::out |
 std::ofstream::trunc |
 std::ofstream::binary);
 output_stream.write(buffer_daq_start.data(), bytes_transferred);
 timer.expires_after(boost::asio::chrono::milliseconds(timeout));
 timer.async_wait(boost::bind(&udp_client::handle_timeout, this,
 boost::asio::placeholders::error));
 }
 else
 {
 std::cerr << "handle daq start error";
 std::cerr << "message : " << error.message() << std::endl;
 }
 return;
 }

 void udp_client::handle_slice_start(const boost::system::error_code &error,
 std::size_t bytes_transferred)
 {
 if(!error)
 {
 // add time to the timeout timer
 timer.expires_after(boost::asio::chrono::milliseconds(timeout));
 timer.async_wait(boost::bind(&udp_client::handle_timeout, this,
 boost::asio::placeholders::error));
 // write the data
 output_stream.write(buffer_slice_start.data(), bytes_transferred);
 }
 else
 {
 std::cerr << "handle daq start error" << std::endl;
 std::cerr << error.message() << std::endl;
 }
 return;
 }

 void udp_client::handle_slice_stop(const boost::system::error_code &error,
 std::size_t bytes_transferred)
 {
 if(!error)
 {
 // add time to the timeout timer
 timer.expires_after(boost::asio::chrono::milliseconds(timeout));
 timer.async_wait(boost::bind(&udp_client::handle_timeout, this,
 boost::asio::placeholders::error));
 // write the data
 output_stream.write(buffer_slice_start.data(), bytes_transferred);
 }
 else
 {
 std::cerr << "handle daq start error" << std::endl;
 std::cerr << error.message() << std::endl;
 }
 return;
 }

 void udp_client::handle_data(const boost::system::error_code& error,
 std::size_t bytes_transferred)
 {
 if(!error)
 {
 // add time to the timeout timer
 timer.expires_after(boost::asio::chrono::milliseconds(timeout));
 timer.async_wait(boost::bind(&udp_client::handle_timeout, this,
 boost::asio::placeholders::error));
 // write the data
 output_stream.write(buffer_slice_start.data(), bytes_transferred);

 // receive_data();
 }
 else
 {
 std::cerr << "handle daq start error" << std::endl;
 std::cerr << error.message() << std::endl;
 }
 receive_data();
 return;
 }

 void udp_client::receive_data()
 {
 socket_data.async_receive
 (boost::asio::buffer(buffer_data_1.data(), buffer_data_1.size()),
 boost::asio::bind_executor
 (strand,
 boost::bind
 (&udp_client::handle_data,
 this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred
)
)
);
 return;
 }

 void udp_client::handle_daq_stop(const boost::system::error_code &error,
 std::size_t bytes_transferred)
 {
 if(!error)
 {
 // add time to the timeout timer
 timer.expires_after(boost::asio::chrono::milliseconds(timeout));
 timer.async_wait(boost::bind(&udp_client::handle_timeout, this,
 boost::asio::placeholders::error));
 // write the data
 output_stream.write(buffer_daq_stop.data(), bytes_transferred);
 }
 output_stream.close();
 return;
 }

 const std::string udp_client::get_data_file_name()
 {
 return filename+std::to_string(file_index)+".dat";
 }

 void udp_client::handle_timeout(const boost::system::error_code& e)
 {
 if (e != boost::asio::error::operation_aborted)
 {
 // close sockets
 socket_daq_start.shutdown(udp::socket::shutdown_both);
 socket_slice_start.shutdown(udp::socket::shutdown_both);
 socket_slice_stop.shutdown(udp::socket::shutdown_both);
 socket_daq_stop.shutdown(udp::socket::shutdown_both);
 socket_data.shutdown(udp::socket::shutdown_both);
 output_stream.close();
 std::cout << "file written and closed, socket closed" << std::endl;
 }
 }

 #include "udp_client.hxx"
 #include <boost/asio.hpp>
 #include <signal.h>
 #include <chrono>
 #include <boost/thread/thread.hpp>
 #include <boost/asio/thread_pool.hpp>

 int main()
 {
 try
 {
 boost::asio::io_context io;
 udp_client client(io);
 boost::thread t{boost::bind(&boost::asio::io_context::run, &io)};
 io.run();
 t.join();
 }
 catch (std::exception& e)
 {
 std::cout << "erreur" << std::endl;
 std::cerr << e.what() << std::endl;
 }
 return 0;
 }

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

