

Forum Programmation.c++ glib::2 threads en parallele, pb de synchro...

Posté par arnobidul le 08 mai 2005 à 12:47.

Étiquettes :
aucune

Alors voila: je dois faire une simulation de termites...donc elle doivent gigoter dans tous les sens et pendant ce temps je dois faire des captures. donc je fais deux threads et la bim:

 Xlib: unexpected async reply (sequence 0x703)!

Processus arrêté

Voila le code(on m'a parlé de la classe dispatcher mais j'y comprends pas grand chose a vrai dire)

Constructeur:

Gtk::Button *play;

Gtk::Button *pause;

Gtk::ToggleButton *rec;

Glib::Thread * t;

Glib::Thread * t1;

Glib::Mutex *mutex;

Glib::Mutex *mutex1;

play->signal_clicked().connect(sigc::mem_fun(*this, &Fenetre::joue));

pause->signal_clicked().connect(sigc::mem_fun(*this, &Fenetre::paus));

rec->signal_toggled().connect(sigc::mem_fun(*this, &Fenetre::enreg_pas_simul));

if(!Glib::thread_supported()) {

	Glib::thread_init();

}

mutex = new Glib::Mutex();

mutex1 = new Glib::Mutex();

mutex->lock();

mutex1->lock();

t = Glib::Thread::create(sigc::mem_fun(*this,&Fenetre::go), true);

t1 = Glib::Thread::create(sigc::mem_fun(*this,&Fenetre::go_enreg), true);

--

void Fenetre::go(){

	while(true){

		mutex->lock();

 mutex->unlock();

		queue_draw();

		maBelleGrille->avanceLesTermitesDuneCase();

	}

}

void Fenetre::go_enreg(){	

	

	const Glib::RefPtr<Gdk::Colormap> cmap = colormap;

	const Glib::RefPtr<Gdk::Drawable> windrawable = win;

	

	Glib::RefPtr<Gdk::Pixbuf> pixbuffer;

	

	while(true){

		mutex1->lock();

 mutex1->unlock();

		cout << "prout" << endl;

		pixbuffer = Gdk::Pixbuf::create(windrawable,cmap,

						0,0,0,0,						 tailleCaseX*maBelleGrille->get_hauteur(),

						tailleCaseY*maBelleGrille->get_largeur());

		st << "captures/";

		st << i;

		st << ".png";

		pixbuffer->save(st.str(),"png");

		i++;

		usleep(CSLEEP);

		st.str("");

	}

}

void Fenetre::joue(){

	adTerm->set_sensitive(false);

	adCopo->set_sensitive(false);

	rmEntite->set_sensitive(false);

	mutex->unlock();

}

void Fenetre::paus(){

	adTerm->set_sensitive(true);

	adCopo->set_sensitive(true);

	rmEntite->set_sensitive(true);

	mutex->trylock();

}

void Fenetre::enreg_pas_simul(){

	if(rec->get_active())

		mutex1->unlock();

	else

		mutex1->trylock();

}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

