

Forum Programmation.c++ operator new + boost::fast_pool_allocator

Posté par errno le 20 avril 2013 à 12:14.
Licence CC By‑SA.

Étiquettes :

	boost

	pool

	allocator

	operator

Bonjour,

Dans le cadre d'un de mes projets qui alloue/désalloue beaucoup d'objets de tailles diverses mais relativement petits (< 100o par objets), j'observe une consommation mémoire très supérieur à ce que ça devrait être.

Comme je soupçonne que la mémoire ressemble à du gruyère (plus il y a de gruyère, plus il y a de trous et plus il y a de trous, moins il y a de gruyère), j'ai voulu tester le pool allocator de boost en surchargeant l'operator new.

Mais avec le cas simplifié ci-dessous, alors que le programme devrait prendre 256Mo de mémoire + éventuellement un peu d'overhead, il en consomme 2x plus soit 512Mo.

Ce facteur de 2x ne change pas selon la taille de l'objet, ni selon le nombre d'allocations.

#include <boost/pool/pool_alloc.hpp>
#include <cstdio>

class Foo
{
private:
 static boost::fast_pool_allocator<Foo> pool;
 char data[256];
public:

 static void * operator new(size_t size) { return pool.allocate();}
 static void operator delete(void * ptr) { pool.deallocate(reinterpret_cast<Foo*>(ptr)); }
};

#define NB_ALLOC 1024*1024

int main()
{
 for(int i = 0; i < NB_ALLOC; ++i) {
 new Foo();
 }
 getchar();
 return 0;
}

Est-ce que je m'y prend mal ?

Est-ce normal ?

si c'est normal avec cet allocateur, en connaissez vous d'autres que je pourrais tester qui permettent de palier à mon problème ?

Merci d'avance

errno

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

