

Forum Programmation.c++ Positions/vitesses initiales de satellites pour observer leurs trajectoires

Posté par BosonXYZT le 12 avril 2023 à 16:08.
Licence CC By‑SA.

Étiquettes :

	physique

	astrophysique

Bonjour,

J'ai réaliser un programme permettant la visualisation d'orbite de satellites géostationnaire autour de la Terre, mais malheureusement, je n'arrive pas à obtenir de bonne conditions initiales afin que celui-ci m'offre des résultats cohérent. Pour un système terre/lune, mes CI marchent très bien, mais dès que je passe aux satellites plus rien.

J'utilise la méthode de Verlet afin d'obtenir de nouvelles positions en fonction du temps, je me disais aussi que c'était peut être le pas de temps qui était mauvais.

Je vous envoie en photo le code, et si jamais quelqu'un aurait une idée sur quoi changer (CI ou pas de temps ou ???) pour obtenir des trajectoires exploitables avec des satellites.

En vous remerciant,

BosonXYZT ;)

Voici mon code (désolé je n'ai pas réussir à mettre de photo)

#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>
using namespace std;

void Satellites(int& choix, double& m, double& X, double& Y, double& Z, double& VX, double& VY, double& VZ) //fonction définissant la Terre et les satelittes
{
 if (choix == 1) // TERRE
 {
 m =5.9736E+24; //masse
 X=-1.315839435E+11; Y=6.763707294E+10; Z = 4.136174231E+05; //positions initiales
 VX=0; VY=0; VZ=0; //vitesses initiales
 }
 else if (choix == 3) // Lune
 {
 m =7.3477E+22;
 X=-1.319042007E+11; Y=6.786886988E+10; Z =-1.649538549E+07;
 VX=-614.453; VY=-783.202; VZ=79.439;
 }
 else if (choix == 2) // SATELLITES
 {
 m =1000;
 X=-36000000; Y=0; Z =0;
 VX=0; VY=3074; VZ=0;
 }

 else
 {
 cout<<"Veuillez réessayer"<<endl;
 }
}

void CalculForces(double FX[],double FY[], double FZ[],double X[],double Y[],double Z[],double m[],int N) //fonction définissant les forces qui s'éxercent sur les différents objets célestes
{
 double G=6.6743e-11; //constante gravitationnelle

 for(int i=0;i<N;i++)
 {
 FX[i]=0; // on initialise les forces à 0
 FY[i]=0;
 FZ[i]=0;
 for(int j=0;j<N;j++)
 {
 if (i!=j)
 {
 double d = pow(X[i]-X[j],2)+pow(Y[i]-Y[j],2)+pow(Z[i]-Z[j],2);
 d = pow(d,1.5);

 FX[i]+=G*m[i]*m[j]/d*(X[j]-X[i]); //formules des forces sur chaque directions
 FY[i]+=G*m[i]*m[j]/d*(Y[j]-Y[i]);
 FZ[i]+=G*m[i]*m[j]/d*(Z[j]-Z[i]);
 }
 }
 }
}

void Verlet(double X[], double Y[], double Z[], double VX[], double VY[], double VZ[], double FX[], double FY[], double FZ[], double m[], int N, double h) //algorithme de propagation avec la methode de verlet
{
 CalculForces(FX,FY,FZ,X,Y,Z,m,N); //on appelle la fonction qui calcule les forces

 for (int i = 0; i < N; i++)
 {
 X[i] = X[i] + VX[i]*h + 0.5*FX[i]/m[i]*pow(h,2); //fonction qui calcul les nouvelles positions en fonction du temps
 Y[i] = Y[i] + VY[i]*h + 0.5*FY[i]/m[i]*pow(h,2);
 Z[i] = Z[i] + VZ[i]*h + 0.5*FZ[i]/m[i]*pow(h,2);

 VX[i] = VX[i] + 0.5*h*FX[i]/m[i]; //fonction qui calcul les nouvelles vitesses une première fois en fonction du temps
 VY[i] = VY[i] + 0.5*h*FY[i]/m[i];
 VZ[i] = VZ[i] + 0.5*h*FZ[i]/m[i];
 }

 CalculForces(FX,FY,FZ,X,Y,Z,m,N); // on rappelle la fonction qui calcule les forces

 for (int i = 0; i < N; i++)
 {
 VX[i] = VX[i] + 0.5*h*FX[i]/m[i]; //fonction qui calcul les nouvelles vitesses une deuxième fois en fonction du temps
 VY[i] = VY[i] + 0.5*h*FY[i]/m[i];
 VZ[i] = VZ[i] + 0.5*h*FZ[i]/m[i];
 }
 enregistrer(N,X,Y,Z); //on enregistre les valeurs des positions dans un fichier
}

int main()
{
 int N;
 cout << "Combien de satellites voulez-vous visualiser ?" << endl;
 cin >> N; //on choisit combien de satelittes on veut étudier
 int choix[N];
 double X[N], Y[N], Z[N], VX[N], VY[N], VZ[N], FX[N], FY[N], FZ[N], m[N] ;

 for (int i = 0; i < N; i++)
 {
 cout << "Satellites " << i+1 << endl;
 do {
 cout << "choisir :" << endl;
 cout << "1 : Terre" << endl;
 cout << "2 : 1 satellites" << endl;
 cout << "3 : 2 satellites" << endl;
 cout << "4 : 3 satellites" << endl;
 cout << "5 : 4 satellites" << endl;
 cout << "6 : 5 satellites" << endl;
 cout << "7 : 6 satellites" << endl;

 cin >> choix[i]; //choix de l'utilisateur
 } while (choix[i] <1 || choix[i] > 7);
 Satellites(choix[i], m[i], X[i],Y[i],Z[i],VX[i],VY[i],VZ[i]);
 }

 int dt = 100; //intervalle de temps entre chaque point
 fstream f; //ouverture du ficher où l'on ecrira l'énergie totale ainsi que les aires calculée
 f.open("etot.txt", ios::out); //on ouvre un fichier pour rentrer les valeurs de l'énergie totale ainsi que celles obtenues avec la loi des aires
 double C=0;

 for (int t = 0; t <=3600*24*10; t = t + dt)
 {
 Verlet(X,Y,Z,VX,VY,VZ,FX,FY,FZ,m,N,dt); //on appelle l'algorithme de Verlet pour calculer positions et vitesses
 if (t%10==0) //intervalle de temps pour calculer l'énergie totale ainsi que la loi des aires, on prend tout les points ayant un rest de divisiob euclidienne par 10 égal à 0
 {
 double EC = Ec(VX, VY, VZ, m, N); //on calcul l'énergie cinétique
 double EP = Ep(X, Y, Z, m, N);//on calcul l'énergie potentielle
 double Etot = EC + EP; //calcul énergie totale
 f<<Etot<<'\t'; //ecriture de l'énergie totale dans le fichier
 C=loi_aire(m,VX,VY,VZ,X,Y,Z); //on appelle la fonction qui calcul la loi des aires
 f<<C<<endl; //ecriture des valeurs calculée par la loi des aires
 }
 }
 f.close(); //fermeture du fichier

 return 0;
}

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

