

Forum Programmation.c++ Problème de templates: undefined reference

Posté par mrr le 16 décembre 2012 à 18:14.

Étiquettes :
aucune

Salut,

J'essaye de coder une fonction en C++ qui sépare un URI en deux: le protocole, et le reste.

mailto:quux@foo.bar -> ("mailto", "quux@foo.bar")

La fonction doit donc retourner deux valeur. J'ai utilisé pour cela un conteneur std::pair<std::string, std::string>. Elle prends en argument un std::string.

namespace URI {
 std::pair<std::string,std::string> splitScheme (const std::string & str);
}

Jusque là, pas de problèmes: la fonction était sale mais marchais bien.

Là où ça se gâte, c'est que je ne suis pas sûr de toujours utiliser une std::string: je voudrais que ma fonction fonctionne aussi avec des std::wstring et des std::u16string.

J'ai donc essayé de transformer ma fonction en fonction template:

template <class STR>
std::pair<STR, STR> splitScheme (const STR & str);

Au final, j'ai le code suivant:

// URI.hpp
#ifndef _DEF_URI_HPP_
#define _DEF_URI_HPP_

#include <string>
#include <utility>
#include <iostream>

namespace URI {
 template <class STR> std::pair<STR, STR> splitScheme (const STR & str);
}

#endif

// URI.cpp
#include "URI.hpp"

template <class STR>
std::pair<STR, STR> URI::splitScheme (const STR & str) {
 typename STR::size_type s = str.find(':');
 typename STR::value_type c;
 unsigned int i;

 // <code sale>
 if ((s == STR::npos) || str.empty())
 return make_pair("", str);
 else {
 for (i = 0; i < s; i++) {
 c = str.at(i);
 if (!((c >= 'A' && c <= 'Z')
 || (c >= 'a' && c <= 'z')
 || ((i >= 1) && (c >= '0' && c <= '9'))
 || ((i >= 1) && (c == '+' || c == '-' || c == '.'))))
 return make_pair("", str);
 }
 return make_pair(str.substr(0, i), str.substr(s+1));

 }
 // </code sale>
}

#include "URI.hpp"

#include <string>
#include <iostream>
#include <utility>

int main (int argc, char ** argv) {
 if (argc != 2) {
 std::cerr << "Usage: " << argv[0] << " uri" << std::endl;
 return 1;
 }

 std::string s(argv[1]);
 std::pair<std::string,std::string> p;

 p = URI::splitScheme<std::string>(s);

 if (!p.first.empty())
 std::cout << "Scheme: " << p.first << std::endl;

 std::cout << "2nd part: " << p.second << std::endl;

 return 0;
}

Au final, quand je compile le code, j'obtiens un message d'erreur de ld:

% g++ URI.cpp main.cpp -o test
/tmp/cc1YnskK.o: In function `main':
main.cpp:(.text+0xb5): undefined reference to `std::pair<std::string, std::string> URI::splitScheme<std::string>(std::string const&)'
collect2: error: ld returned 1 exit status

Si je déclare manuellement le prototype non défini, ça ne fait rien de plus:

template <> std::pair<std::string, std::string> splitScheme (const std::string & str);

Quelqu'un a une idée ? Peut être qu'utiliser un std::pair n'est pas la bonne

méthode ?

Merci d'avance :-)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

