

Forum Programmation.perl adaptation cssh en telnet

Posté par xusnet le 03 août 2007 à 17:22.

Étiquettes :

	debian

Bonjour,

je ne connais assez perl pour modifier le script cssh.

je souhaite faire la même chose que le script cssh mais avec telnet pas avec du ssh.

Je sais telnet n'est pas sécuriser, mais je n'ai pas le choix.

Quelqu'un peut il m'aider a adapter ce script pour faire du telnet au lieu du ssh ?

Ci-dessous le script. Merci d'avance pour toutes réponses.

#!/usr/bin/perl

my $VERSION = '$Revision: 3.19 $ ($Date: 2006/07/24 19:12:54 $)';

Now tidy it up, but in such as way cvs doesn't kill the tidy up stuff

$VERSION =~ s/\$Revision: //;

$VERSION =~ s/\$Date: //;

$VERSION =~ s/ \$//g;

all use statements

use strict;

use warnings;

use 5.006_000;

use Pod::Usage;

use Getopt::Std;

use POSIX qw/:sys_wait_h strftime mkfifo/;

use File::Temp qw/:POSIX/;

use Fcntl;

use Tk 800.022;

use Tk::Xlib;

require Tk::Dialog;

require Tk::LabEntry;

use X11::Protocol;

use X11::Protocol::Constants qw/ Shift Mod5 ShiftMask /;

use vars qw/ %keysymtocode %keycodetosym /;

use X11::Keysyms '%keysymtocode',

	'MISCELLANY', 'XKB_KEYS', '3270', 'LATIN1', 'LATIN2',

	'LATIN3', 'LATIN4', 'KATAKANA', 'ARABIC', 'CYRILLIC',

	'GREEK', 'TECHNICAL', 'SPECIAL', 'PUBLISHING', 'APL',

	'HEBREW', 'THAI', 'KOREAN';

use File::Basename;

use Net::hostent;

all global variables

my $scriptname = $0;

$scriptname =~ s!.*/!!; # get the script name, minus the path

my $options = 'dDv?hHuqQgGit:T:c:l:o:e:'; # Command line options list

my %options;

my %config;

my $debug = 0;

my %clusters; # hash for resolving cluster names

my %windows; # hash for all window definitions

my %menus; # hash for all menu definitions

my @servers; # array of servers provided on cmdline

my %servers; # hash of server cx info

my $helper_script = "";

my $xdisplay;

my %keyboardmap;

Fudge to get X11::Keysyms working

%keysymtocode = %main::keysymtocode;

$keysymtocode{unknown_sym} = 0xFFFFFF; # put in a default "unknown" entry

$keysymtocode{EuroSign} = 0x20AC; # Euro sigyn - missing from X11::Protocol::Keysyms

and also map it the other way

%keycodetosym = reverse %keysymtocode;

Set up UTF-8 on STDOUT

binmode STDOUT, ":utf8";

#use bytes;

all sub-routines

catch_all exit routine that should always be used

sub exit_prog()

{

 logmsg(3, "Exiting via normal routine");

 # for each of the client windows, send a kill

 # to make sure we catch all children, even when they havnt

 # finished starting or received teh kill signal, do it like this

 while (%servers)

 {

 foreach my $svr (keys(%servers))

 {

 logmsg(2, "Killing process $servers{$svr}{pid}");

 kill(9, $servers{$svr}{pid}) if kill(0, $servers{$svr}{pid});

 delete($servers{$svr});

 }

 }

 exit 0;

}

output function according to debug level

$1 = log level (0 to 3)

$2 .. $n = list to pass to print

sub logmsg($@)

{

 my $level = shift;

 if ($level <= $debug)

 {

 print(strftime("%H:%M:%S: ", localtime)) if ($debug > 1);

 print @_, $/;

 }

}

set some application defaults

sub load_config_defaults()

{

 $config{terminal} = "/usr/bin/xterm";

 $config{terminal_args} = "";

 $config{terminal_title_opt} = "-T";

 $config{terminal_allow_send_events} =

 "-xrm 'XTerm.VT100.allowSendEvents:true'";

 $config{terminal_font} = "6x13";

 $config{terminal_size} = "80x24";

 $config{use_hotkeys} = "yes";

 $config{key_quit} = "Control-q";

 $config{key_addhost} = "Control-plus";

 $config{key_clientname} = "Alt-n";

 $config{key_retilehosts} = "Alt-r";

 $config{key_paste} = "Control-v";

 $config{mouse_paste} = "Button-2";

 $config{auto_quit} = "yes";

 $config{window_tiling} = "yes";

 $config{window_tiling_direction} = "right";

 $config{console_position} = "";

 $config{ignore_host_errors} = "no";

 $config{screen_reserve_top} = 0;

 $config{screen_reserve_bottom} = 40;

 $config{screen_reserve_left} = 0;

 $config{screen_reserve_right} = 0;

 $config{terminal_reserve_top} = 0;

 $config{terminal_reserve_bottom} = 0;

 $config{terminal_reserve_left} = 0;

 $config{terminal_reserve_right} = 0;

 $config{terminal_decoration_height} = 10;

 $config{terminal_decoration_width} = 8;

 ($config{comms} = basename($0)) =~ s/^.//;

 $config{comms} =~ s/.pl$//; # for when testing directly out of cvs

 $config{ $config{comms} } = $config{comms};

 $config{ssh_args} = "";

 $config{ssh_args} .= "-x -o ConnectTimeout=10"

 if ($config{ $config{comms} } =~ /ssh$/);

 $config{rsh_args} = "";

 $config{title} = "CSSH";

 $config{unmap_on_redraw} = "no";	# Debian #329440

}

load in config file settings

sub parse_config_file($)

{

 my $config_file = shift;

 logmsg(2, "Reading in from config file $config_file");

 return if (!-f $config_file);

 open(CFG, $config_file) or die("Couldnt open $config_file: $!");

 while ()

 {

 next if (/^\s*$/ || /^#/); # ignore blank lines & commented lines

 s/#.*//; # remove comments from remaining lines

 s/\s*$//; # remove trailing whitespace

 chomp();

 #my ($key, $value) = split(/[]*=[]*/);

 /(\w+)[]*=[]*(.*)/;

 my ($key, $value) = ($1, $2);

 $config{$key} = $value;

 logmsg(3, "$key=$value");

 }

 close(CFG);

}

sub find_binary($)

{

 my $binary = shift;

 logmsg(2, "Looking for $binary");

 my $path;

 unless ($binary =~ m#/#)

 {

 # search the users $PATH and then a few other places to find the binary

 # just in case $PATH isnt set up right

 foreach (split(/:/, $ENV{PATH}), qw!

 /bin

 /sbin

 /usr/sbin

 /usr/bin

 /usr/local/bin

 /usr/local/sbin

 /opt/local/bin

 /opt/local/sbin

 !)

 {

 logmsg(3, "Looking in $_");

 if (-x $_ . '/' . $binary)

 {

 $path = $_ . '/' . $binary;

 logmsg(2, "Found at $path");

 last;

 }

 }

 } else

 {

 logmsg(2, "Already configured OK");

 $path = $binary;

 }

 if (!$path || ! -f $path || ! -x $path)

 {

 warn("Terminal binary not found ($binary) - please amend \$PATH or the cssh config file\n");

 die unless ($options{u});

 }

 chomp($path);

 return $path;

}

make sure our config is sane (i.e. binaries found) and get some extra bits

sub check_config()

{

 # check we have xterm on our path

 logmsg(2, "Checking path to xterm");

 $config{terminal} = find_binary($config{terminal});

 # check we have comms method on our path

 logmsg(2, "Checking path to $config{comms}");

 $config{ $config{comms} } = find_binary($config{ $config{comms} });

 # make sure comms in an accepted value

 die

"FATAL: Only ssh and rsh protocols are currently supported (comms=$config{comms})\n"

 if ($config{comms} !~ /^[rs]sh$/);

 # Set any extra config options given on command line

 $config{title} = $options{T} if ($options{T});

 $config{auto_quit} = "yes" if $options{q};

 $config{auto_quit} = "no" if $options{Q};

 # backwards compatibility & tidyup

 if ($config{always_tile})

 {

 if (!$config{window_tiling})

 {

 if ($config{always_tile} eq "never")

 {

 $config{window_tiling} = "no";

 } else

 {

 $config{window_tiling} = "yes";

 }

 }

 delete($config{always_tile});

 }

 $config{window_tiling} = "yes" if $options{g};

 $config{window_tiling} = "no" if $options{G};

 $config{user} = $options{l} if ($options{l});

 $config{terminal_args} = $options{t} if ($options{t});

 $config{ignore_host_errors} = "yes" if ($options{i});

 $config{internal_previous_state} = ""; # set to default

 get_font_size();

}

sub load_configfile()

{

 parse_config_file('/etc/csshrc');

 parse_config_file($ENV{HOME} . '/.csshrc');

 check_config();

}

dump out the config to STDOUT

sub dump_config

{

 my $noexit = shift;

 logmsg(3, "Dumping config to STDOUT");

 print("# Configuration dump produced by 'cssh -u'\n");

 foreach (sort(keys(%config)))

 {

 next if ($_ =~ /^internal/ && $debug == 0); # do not output internal vars

 print "$_=$config{$_}\n";

 }

 exit_prog if (!$noexit);

}

sub evaluate_commands

{

 my ($return, $user, $port, $host);

 # break apart the given host string to check for user or port configs

 print "{e}=$options{e}\n";

 $user = $1 if ($options{e} =~ m/^(\w+)@\w+/);

 $port = $1 if ($options{e} =~ m/:(\d+)/);

 $host = $options{e};

 $host =~ s/^(?:\w+@)(\w+)(?::\d+)$/$1/;

 $user = $user ? "-l $user" : "";

 $port = $port ? "-p $port" : "";

 print STDERR "Testing terminal - running command:\n";

 my $terminal_command =

"$config{terminal} $config{terminal_allow_send_events} -e \"$^X\" \"-e\" 'print \"Working\\n\" ; sleep 5'";

 print STDERR $terminal_command, $/;

 system($terminal_command);

 print STDERR "\nTesting comms - running command:\n";

 my $comms_command =

 $config{ $config{comms} } . " "

 . $config{ $config{comms} . "_args" }

 . " $user $port $host echo Working";

 print STDERR $comms_command, $/;

 system($comms_command);

 exit_prog;

}

sub load_keyboard_map()

{

 # load up the keyboard map to convert keysyms to keyboardmap

 my $min = $xdisplay->{min_keycode};

 my $count = $xdisplay->{max_keycode} - $min;

 my @keyboard = $xdisplay->GetKeyboardMapping($min, $count);

	# @keyboard arry

	# 0 = plain key

	# 1 = with shift

	# 2 = with Alt-GR

	# 3 = with shift + AltGr

	# 4 = same as 2 - control/alt?

	# 5 = same as 3 - shift-control-alt?

	logmsg(1, "Loading keymaps and keycodes");

 foreach (0 .. $#keyboard)

 {

		if(defined($keycodetosym { $keyboard[$_][0] }))

		{

			$keyboardmap{ $keycodetosym { $keyboard[$_][0] } } = 'n' . ($_ + $min);

		} else {

			logmsg(2, "Unknown keycode ", $keyboard[$_][0]) if($keyboard[$_][0] != 0);

		}

		if(defined($keycodetosym { $keyboard[$_][1] }))

		{

			$keyboardmap{ $keycodetosym { $keyboard[$_][1] } } = 's' . ($_ + $min);

		} else {

			logmsg(2, "Unknown keycode ", $keyboard[$_][1]) if($keyboard[$_][1] != 0);

		}

		if(defined($keycodetosym { $keyboard[$_][2] }))

		{

			$keyboardmap{ $keycodetosym { $keyboard[$_][2] } } = 'a' . ($_ + $min);

		} else {

			logmsg(2, "Unknown keycode ", $keyboard[$_][2]) if($keyboard[$_][2] != 0);

		}

		if(defined($keycodetosym { $keyboard[$_][3] }))

		{

			$keyboardmap{ $keycodetosym { $keyboard[$_][3] } } = 'sa' . ($_ + $min);

		} else {

			logmsg(2, "Unknown keycode ", $keyboard[$_][3]) if($keyboard[$_][3] != 0);

		}

		# dont know these two key combs yet...

		#$keyboardmap{ $keycodetosym { $keyboard[$_][4] } } = $_ + $min;

		#$keyboardmap{ $keycodetosym { $keyboard[$_][5] } } = $_ + $min;

 }

	#print "$_ => $keyboardmap{$_}\n" foreach(sort(keys(%keyboardmap)));

	#print "keysymtocode: $keysymtocode{EuroSign}\n";

	#die;

}

sub get_keycode_state($)

{

	my $keysym=shift;

	$keyboardmap{ $keysym } =~ m/^(\D+)(\d+)$/;

	my ($state,$code) = ($1, $2);

	logmsg(2, "keyboardmap=:",$keyboardmap{ $keysym },":");

	logmsg(2, "state=$state, code=$code");

	SWITCH: for ($state)

	{

		/^n$/ && do {

			$state=0;

			last SWITCH;

		};

		/^s$/ && do {

			$state=Shift();

			last SWITCH;

		};

		/^a$/ && do {

			$state=Mod5();

			last SWITCH;

		};

		/^sa$/ && do {

			$state=Shift()+Mod5();

			last SWITCH;

		};

		die("Should never reach here");

	}

	logmsg(2, "returning state=:$state: code=:$code:");

	return ($state, $code);

}

read in all cluster definitions

sub get_clusters()

{

 # first, read in global file

 my $cluster_file = '/etc/clusters';

 logmsg(3, "Logging for $cluster_file");

 if (-f $cluster_file)

 {

 logmsg(2, "Loading clusters in from $cluster_file");

 open(CLUSTERS, $cluster_file) || die("Couldnt read $cluster_file");

 while ()

 {

 next if (/^\s*$/ || /^#/); # ignore blank lines & commented lines

 chomp();

 my @line = split(/\s/);

 #s/^([\w-]+)\s*//; # remote first word and stick into $1

 logmsg(3, "cluster $line[0] = ", join(" ", @line[1 .. $#line]));

 $clusters{ $line[0] } =

 join(" ", @line[1 .. $#line]); # Now bung in rest of line

 }

 close(CLUSTERS);

 }

 # Now get any definitions out of %config

 logmsg(2, "Looking for csshrc");

 if ($config{clusters})

 {

 logmsg(2, "Loading clusters in from csshrc");

 foreach (split(/\s+/, $config{clusters}))

 {

 if (!$config{$_})

 {

 warn("WARNING: missing cluster definition in .csshrc file ($_)");

 } else

 {

 logmsg(3, "cluster $_ = $config{$_}");

 $clusters{$_} = $config{$_};

 }

 }

 }

 # and finally, any additional cluster file provided

 if ($options{c})

 {

 if (-f $options{c})

 {

 logmsg(2, "Loading clusters in from $options{c}");

 open(CLUSTERS, $options{c}) || die("Couldnt read $options{c}");

 while ()

 {

 next if (/^\s*$/ || /^#/); # ignore blank lines & commented lines

 chomp();

 #s/^([\w-]+)\s*//; # remote first word and stick into $1

 #logmsg(3, "cluster $1 = $_");

 #$clusters{$1} = $_; # Now bung in rest of line

 my @line = split(/\s/);

 logmsg(3, "cluster $line[0] = ", join(" ", @line[1 .. $#line]));

 $clusters{ $line[0] } =

 join(" ", @line[1 .. $#line]); # Now bung in rest of line

 }

 close(CLUSTERS);

 } else

 {

 warn("WARNING: Custom cluster file '$options{c}' cannot be opened\n");

 }

 }

 logmsg(2, "Finished loading clusters");

}

sub resolve_names(@)

{

 logmsg(2, "Resolving cluster names: started");

 my @servers = @_;

 foreach (@servers)

 {

 logmsg(3, "Found server $_");

 if ($clusters{$_})

 {

 push(@servers, split(/ /, $clusters{$_}));

 $_ = "";

 }

 }

 my @cleanarray;

 # now clean the array up

 foreach (@servers)

 {

 push(@cleanarray, $_) if ($_ !~ /^$/);

 }

 foreach (@cleanarray)

 {

 logmsg(3, "leaving with $_");

 }

 logmsg(2, "Resolving cluster names: completed");

 return (@cleanarray);

}

sub change_main_window_title()

{

 my $number = keys(%servers);

 $windows{main_window}->title($config{title} . " [$number]");

}

sub send_text($@)

{

 my $svr = shift;

 my $text = join("", @_);

 #logmsg(2, "Sending to $svr text:$text:");

 logmsg(2, "servers{$svr}{wid}=$servers{$svr}{wid}");

 foreach my $char (split(//, $text))

 {

 next if (!defined($char));

 my $ord = ord($char);

		$ord=65293 if($ord == 10); # convert 'Return' to sym

		if(!defined($keycodetosym{ $ord }))

		{

			warn("Unknown character in xmodmap keytable: $char ($ord)\n");

			next;

		}

		my $keysym = $keycodetosym{ $ord };

 my $keycode = $keysymtocode{ $keysym };

 logmsg(2, "Looking for char :$char: with ord :$ord:");

 logmsg(2, "Looking for keycode :$keycode:");

 logmsg(2, "Looking for keysym :$keysym:");

 logmsg(2, "Looking for keyboardmap :",$keyboardmap{ $keysym },":");

	 my ($state, $code) = get_keycode_state($keysym);

		logmsg(2, "Got state :$state: code :$code:");

 for my $event (qw/KeyPress KeyRelease/)

 {

 logmsg(2, "sending event=$event code=:$code: state=:$state:");

 $xdisplay->SendEvent(

 $servers{$svr}{wid},

 0,

 $xdisplay->pack_event_mask($event),

 $xdisplay->pack_event(

 'name' => $event,

 'detail' => $code,

 'state' => $state,

 'time' => time(),

 'event' => $servers{$svr}{wid},

 'root' => $xdisplay->root(),

 'same_screen' => 1,

),

);

 }

 }

 $xdisplay->flush();

}

sub send_clientname()

{

 foreach my $svr (keys(%servers))

 {

 send_text($svr, $servers{$svr}{realname})

 if ($servers{$svr}{active} == 1);

 }

}

sub send_resizemove($$$$$)

{

 my ($win, $x_pos, $y_pos, $x_siz, $y_siz) = @_;

 logmsg(3,

 "Moving window $win to x:$x_pos y:$y_pos (size x:$x_siz y:$y_siz)");

 #logmsg(2, "resize move normal: ", $xdisplay->atom('WM_NORMAL_HINTS'));

 #logmsg(2, "resize move size: ", $xdisplay->atom('WM_SIZE_HINTS'));

 # set the window to have "user" set size & position, rather than "program"

 $xdisplay->req(

 'ChangeProperty',

 $win,

 $xdisplay->atom('WM_NORMAL_HINTS'),

 $xdisplay->atom('WM_SIZE_HINTS'),

 32,

 'Replace',

 # dark magic - create data struct on fly - to set required flags

 pack("L" . "x[i]" x 17, 3),

);

 $xdisplay->req(

 'ConfigureWindow',

 $win,

 'x' => $x_pos,

 'y' => $y_pos,

 'width' => $x_siz,

 'height' => $y_siz,

);

 #$xdisplay->flush(); # dont flush here, but after all tiling worked out

}

sub setup_helper_script()

{

 logmsg(2, "Setting up helper script");

 $helper_script = <<"	HERE";

		my \$pipe=shift;

		my \$svr=shift;

		my \$user=shift;

		my \$port=shift;

		\$user = \$user ? "-l \$user" : "";

		\$port = \$port ? "-p \$port" : "";

		open(PIPE, ">", \$pipe);

		print PIPE "\$\$:\$ENV{WINDOWID}";

		close(PIPE);

		if(\$svr =~ /==\$/)

		{

			\$svr =~ s/==\$//;

			warn("\n\nWARNING: failed to resolve IP address for \$svr.\n\n".

				"Either 'ignore_host_errors' or -i is set. This connection may hang\n\n\n"

);

		}

		exec("$config{$config{comms}} $config{$config{comms}."_args"} \$port \$user \$svr");

	HERE

 logmsg(2, $helper_script);

 logmsg(2, "Helper script done");

}

sub open_client_windows(@)

{

 foreach (@_)

 {

 next unless ($_);

 my $username = "";

 $username = $config{user} if ($config{user});

 my $port_nb;

 # split off any provided hostname and port

 if ($_ =~ /(\w+)@/)

 {

 $username = $1;

 $_ =~ s/.*@//;

 }

 if ($_ =~ /:(\w+)/)

 {

 $port_nb = $1;

 $_ =~ s/:.*//;

 }

 my $count = 1;

 my $server = $_;

 while (defined($servers{$server}))

 {

 $server = $_ . " " . $count++;

 }

 # see if we can find the hostname - if not, drop it

 my $gethost = gethost("$_");

 if (!$gethost)

 {

 my $text =

"WARNING: unknown host $_ (see -i switch, or ignore_host_errors in .csshrc)";

 $text .= " - ignoring" unless ($config{ignore_host_errors} =~ /yes/i);

 $text .= "\n";

 warn($text);

 next unless ($config{ignore_host_errors} =~ /yes/i);

 }

 $servers{$server}{realname} = $_;

 $servers{$server}{username} = $username;

 $servers{$server}{port_nb} = $port_nb || '';

 logmsg(2, "Working on server $server for $_");

 $servers{$server}{pipenm} = tmpnam();

 logmsg(2, "Set temp name to: $servers{$server}{pipenm}");

 mkfifo($servers{$server}{pipenm}, 0600) or die("Cannot create pipe: $!");

 # NOTE: the pid is re-fetched from the xterm window (via helper_script)

 # later as it changes and we need an accurate PID as it is widely used

 $servers{$server}{pid} = fork();

 if (!defined($servers{$server}{pid}))

 {

 die("Could not fork: $!");

 }

 if ($servers{$server}{pid} == 0)

 {

 # this is the child

 # Since this is the child, we can mark any server unresolved without

 # affecting the main program

 $servers{$server}{realname} .= "==" if (!$gethost);

 my $exec =

"$config{terminal} $config{terminal_args} $config{terminal_allow_send_events} $config{terminal_title_opt} '$config{title}:$server' -font $config{terminal_font} -e \"$^X\" \"-e\" '$helper_script' $servers{$server}{pipenm} $servers{$server}{realname} $servers{$server}{username} $servers{$server}{port_nb}";

 my $test =

"$config{terminal} $config{terminal_allow_send_events} -e \"$^X\" \"-e\" 'print \"Working\\n\" ; sleep 5'";

 logmsg(1, "Terminal testing line:\n$test\n");

 logmsg(2, "Terminal exec line:\n$exec\n");

 exec($exec) == 0 or warn("Failed: $!");

 }

 }

 # Now all the windows are open, get all their window id's

 foreach my $server (keys(%servers))

 {

 next if (defined($servers{$server}{active}));

 # block on open so we get the text when it comes in

 if (

 !sysopen(

 $servers{$server}{pipehl}, $servers{$server}{pipenm}, O_RDONLY

)

)

 {

 unlink($servers{$server}{pipenm});

 warn("Cannot open pipe for writing when talking to $server: $!\n");

 }

 # NOTE: read both the xterm pid and the window ID here

 # get PID here as it changes from the fork above, and we need the

 # correct PID

 logmsg(2, "Performing sysread");

 my $piperead;

 sysread($servers{$server}{pipehl}, $piperead, 100);

 $servers{$server}{pid} = (split(":", $piperead))[0];

 $servers{$server}{wid} = (split(":", $piperead))[1];

 logmsg(2, "Done and closing pipe");

 close($servers{$server}{pipehl});

 delete($servers{$server}{pipehl});

 unlink($servers{$server}{pipenm});

 delete($servers{$server}{pipenm});

 $servers{$server}{active} = 1; # mark as active

 $config{internal_activate_autoquit} = 1; # activate auto_quit if in use

 }

 logmsg(2, "All client windows opened");

 $config{internal_total} = int(keys(%servers));

}

sub get_font_size()

{

 logmsg(2, "Fetching font size");

 # get atom name<->number relations

 my $quad_width = $xdisplay->atom("QUAD_WIDTH");

 my $pixel_size = $xdisplay->atom("PIXEL_SIZE");

 my $font = $xdisplay->new_rsrc;

 $xdisplay->OpenFont($font, $config{terminal_font});

 my %font_info;

 eval { (%font_info) = $xdisplay->QueryFont($font); }

 || die("Fatal: Unrecognised font used ($config{terminal_font}).\n"

 . "Please amend \$HOME/.csshrc with a valid font (see man page).\n");

 $config{internal_font_width} = $font_info{properties}{$quad_width};

 $config{internal_font_height} = $font_info{properties}{$pixel_size};

 if (!$config{internal_font_width} || !$config{internal_font_height})

 {

 die("Fatal: Unrecognised font used ($config{terminal_font}).\n"

 . "Please amend \$HOME/.csshrc with a valid font (see man page).\n");

 }

 logmsg(2, "Done with font size");

}

sub show_console()

{

 logmsg(2, "Sending console to front");

 $config{internal_previous_state} = "mid-change";

 # fudge the counter to drop a redraw event;

 $config{internal_map_count} -= 4;

 $xdisplay->flush();

 $windows{main_window}->update();

 select(undef, undef, undef, 0.2); #sleep for a mo

 $windows{main_window}->withdraw;

 $windows{main_window}->deiconify;

 $windows{main_window}->raise;

 $windows{main_window}->focus(-force);

 $windows{text_entry}->focus(-force);

 $config{internal_previous_state} = "normal";

 $windows{main_window}->MapWindow;		# fvwm seems to need this (Debian #329440)

}

leave function def open here so we can be flexible in how it called

sub retile_hosts

{

 my $force = shift || "";

 logmsg(2, "Retiling windows");

 if ($config{window_tiling} ne "yes" && !$force)

 {

 logmsg(3, "Not meant to be tiling; just reshow windows as they were");

 foreach my $server (reverse(keys(%servers)))

 {

 $xdisplay->req('MapWindow', $servers{$server}{wid});

 }

 $xdisplay->flush();

 show_console();

 return;

 }

 # ALL SIZES SHOULD BE IN PIXELS for consistency

 logmsg(2, "Count is currently $config{internal_total}");

 if ($config{internal_total} == 0)

 {

 # If nothing to tile, done bother doing anything, just show console

 show_console();

 return;

 }

 # work out terminal pixel size from terminal size & font size

 # does not include any title bars or scroll bars - purely text area

 $config{internal_terminal_cols} = ($config{terminal_size} =~ /(\d+)x.*/)[0];

 $config{internal_terminal_width} =

 ($config{internal_terminal_cols} * $config{internal_font_width}) +

 $config{terminal_decoration_width};

 $config{internal_terminal_rows} = ($config{terminal_size} =~ /.*x(\d+)/)[0];

 $config{internal_terminal_height} =

 ($config{internal_terminal_rows} * $config{internal_font_height}) +

 $config{terminal_decoration_height};

 # fetch screen size

 $config{internal_screen_height} = $xdisplay->{height_in_pixels};

 $config{internal_screen_width} = $xdisplay->{width_in_pixels};

 # Now, work out how many columns of terminals we can fit on screen

 $config{internal_columns} = int(

 (

 $config{internal_screen_width} - $config{screen_reserve_left} -

 $config{screen_reserve_right}

) / (

 $config{internal_terminal_width} + $config{terminal_reserve_left} +

 $config{terminal_reserve_right}

)

);

 # Work out the number of rows we need to use to fit everything on screen

 $config{internal_rows} =

 int(($config{internal_total} / $config{internal_columns}) + 0.999);

 logmsg(2, "Screen Columns: ", $config{internal_columns});

 logmsg(2, "Screen Rows: ", $config{internal_rows});

 # Now adjust the height of the terminal to either the max given,

 # or to get everything on screen

 {

 my $height = int(

 (

 (

 $config{internal_screen_height} - $config{screen_reserve_top} -

 $config{screen_reserve_bottom}

) - (

 $config{internal_rows} * (

 $config{terminal_reserve_top} + $config{terminal_reserve_bottom}

)

)

) / $config{internal_rows}

);

 logmsg(2, "Terminal height=$height");

 $config{internal_terminal_height} = (

 $height > $config{internal_terminal_height}

 ? $config{internal_terminal_height}

 : $height

);

 }

 #dump_config("noexit") if($debug > 1);

 # now we have the info, plot first window position

 my @hosts;

 my ($current_x, $current_y, $current_row, $current_col) = 0;

 if ($config{window_tiling_direction} =~ /right/i)

 {

 logmsg(2, "Tiling top left going bot right");

 @hosts = sort(keys(%servers));

 $current_x = $config{screen_reserve_left} +

			$config{terminal_reserve_left};

 $current_y = $config{screen_reserve_top} +

			$config{terminal_reserve_top};

 $current_row = 0;

 $current_col = 0;

 } else

 {

 logmsg(2, "Tiling bot right going top left");

 @hosts = reverse(sort(keys(%servers)));

 $current_x =

			$config{screen_reserve_right} -

 $config{internal_screen_width} -

			$config{terminal_reserve_right} -

 $config{internal_terminal_width};

 $current_y =

			$config{screen_reserve_bottom} -

 $config{internal_screen_height} -

 $config{terminal_reserve_bottom} -

 $config{internal_terminal_height};

 $current_row = $config{internal_rows} - 1;

 $current_col = $config{internal_columns} - 1;

 }

 # Unmap windows (hide them)

 # Move windows to new locatation

 # Remap all windows in correct order

 foreach my $server (@hosts)

 {

 logmsg(3, "x:$current_x y:$current_y, r:$current_row c:$current_col");

 if ($config{unmap_on_redraw} =~ /yes/i)

 {

 $xdisplay->req('UnmapWindow', $servers{$server}{wid});

 }

 logmsg(2, "Moving $server window");

 send_resizemove(

 $servers{$server}{wid},

 $current_x, $current_y,

 $config{internal_terminal_width},

 $config{internal_terminal_height}

);

 if ($config{window_tiling_direction} =~ /right/i)

 {

 # starting top left, and move right and down

 $current_x +=

 $config{terminal_reserve_left} +

 $config{terminal_reserve_right} +

 $config{internal_terminal_width};

 $current_col += 1;

 if ($current_col == $config{internal_columns})

 {

 $current_y +=

 $config{terminal_reserve_top} +

 $config{terminal_reserve_bottom} +

 $config{internal_terminal_height};

 $current_x = $config{screen_reserve_left} +

 $config{terminal_reserve_left};

 $current_row++;

 $current_col = 0;

 }

 } else

 {

 # starting bottom right, and move left and up

 $current_col -= 1;

 if ($current_col < 0)

 {

 $current_row--;

 $current_col = $config{internal_columns};

 }

 }

 }

 # Now remap in right order to get overlaps correct

 if ($config{window_tiling_direction} =~ /right/i)

 {

 foreach my $server (reverse(@hosts))

 {

 logmsg(2, "Setting focus on $server");

 $xdisplay->req('MapWindow', $servers{$server}{wid});

 }

 } else

 {

 foreach my $server (@hosts)

 {

 logmsg(2, "Setting focus on $server");

 $xdisplay->req('MapWindow', $servers{$server}{wid});

 }

 }

 # and as a last item, set focus back onto the console

 show_console();

}

sub capture_terminal()

{

 logmsg(0, "Stub for capturing a terminal window");

 return if ($debug < 2);

 foreach my $server (keys(%servers))

 {

 foreach my $data (keys(%{ $servers{$server} }))

 {

 print "server $server key $data is $servers{$server}{$data}\n";

 }

 }

 #return;

 my %atoms;

 for my $atom ($xdisplay->req('ListProperties', $servers{loki}{wid}))

 {

 $atoms{ $xdisplay->atom_name($atom) } =

 $xdisplay->req('GetProperty', $servers{loki}{wid},

 $atom, "AnyPropertyType", 0, 200, 0);

 print $xdisplay->atom_name($atom), " ($atom) => ";

 print "join here\n";

 print join(

 "\n",

 $xdisplay->req(

 'GetProperty', $servers{loki}{wid},

 $atom, "AnyPropertyType", 0, 200, 0

)

),

 "\n";

 }

 print "list by number\n";

 for my $atom (1 .. 90)

 {

 print "$atom: ", $xdisplay->req('GetAtomName', $atom), "\n";

 print join(

 "\n",

 $xdisplay->req(

 'GetProperty', $servers{loki}{wid},

 $atom, "AnyPropertyType", 0, 200, 0

)

),

 "\n";

 }

 print "\n";

 print "size hints\n";

 print join(

 "\n",

 $xdisplay->req(

 'GetProperty', $servers{loki}{wid},

 42, "AnyPropertyType", 0, 200, 0

)

),

 "\n";

 print "atom list by name\n";

 foreach (keys(%atoms))

 {

 print "atom :$_: = $atoms{$_}\n";

 }

 print "geom\n";

 print join " ", $xdisplay->req('GetGeometry', $servers{loki}{wid}), $/;

 print "attrib\n";

 print join " ", $xdisplay->req('GetWindowAttributes', $servers{loki}{wid}),

 $/;

}

sub toggle_active_state()

{

	logmsg(2, "Toggling active state of all hosts");

 foreach my $svr (sort(keys(%servers)))

 {

		$servers{$svr}{active} = not $servers{$svr}{active};

	}

}

sub add_host_by_name()

{

 logmsg(2, "Adding host to menu here");

 $windows{host_entry}->focus();

 my $answer = $windows{addhost}->Show();

 if ($answer ne "Add")

 {

 $menus{host_entry} = "";

 return;

 }

 logmsg(2, "host=$menus{host_entry}");

 open_client_windows(resolve_names(split(/\s+/, $menus{host_entry})));

 build_hosts_menu();

 $menus{host_entry} = "";

 # retile, or bring console to front

 if ($config{window_tiling} eq "yes")

 {

 retile_hosts();

 } else

 {

 show_console();

 }

}

sub build_hosts_menu()

{

 logmsg(2, "Building hosts menu");

 # first, emtpy the hosts menu from the 4th entry on

 my $menu = $menus{bar}->entrycget('Hosts', -menu);

 $menu->delete(5, 'end');

 logmsg(3, "Menu deleted");

 # add back the seperator

 $menus{hosts}->separator;

 logmsg(3, "Parsing list");

 foreach my $svr (sort(keys(%servers)))

 {

 logmsg(3, "Checking $svr and restoring active value");

 $menus{hosts}->checkbutton(

 -label => $svr,

 -variable => \$servers{$svr}{active},

);

 }

 logmsg(3, "Changing window title");

 change_main_window_title();

 logmsg(2, "Done");

}

sub setup_repeat()

{

 $config{internal_count} = 0;

 # if this is too fast then we end up with queued invocations

 # with no time to run anything else

 $windows{main_window}->repeat(

 500,

 sub {

 $config{internal_count} = 0

 if ($config{internal_count} > 60000); # reset if too high

 $config{internal_count}++;

 my $build_menu = 0;

 logmsg(4, "Running repeat (count=$config{internal_count})");

 #logmsg(4, "Number of servers in hash is: ", scalar(keys(%servers)));

 foreach my $svr (keys(%servers))

 {

	 if (defined $servers{$svr}{pid})

		{

 if (!kill(0, $servers{$svr}{pid}))

 {

 $build_menu = 1;

 delete($servers{$svr});

 logmsg(0, "$svr session closed");

 }

		}

 }

 # get current number of clients

 $config{internal_total} = int(keys(%servers));

 #logmsg(4, "Number after tidy is: ", $config{internal_total});

 # get current number of clients

 $config{internal_total} = int(keys(%servers));

 #logmsg(4, "Number after tidy is: ", $config{internal_total});

 # If there are no hosts in the list and we are set to autoquit

 if ($config{internal_total} == 0 && $config{auto_quit} =~ /yes/i)

 {

 # and some clients were actually opened...

 if ($config{internal_activate_autoquit})

 {

 logmsg(2, "Autoquitting");

 exit_prog;

 }

 }

 # rebuild host menu if something has changed

 build_hosts_menu() if ($build_menu);

 # clean out text area, anyhow

 $menus{entrytext} = "";

 #logmsg(4, "repeat completed");

 }

);

 logmsg(2, "Repeat setup");

}

Window and menu definitions

sub create_windows()

{

 logmsg(2, "create_windows: started");

 $windows{main_window} = MainWindow->new(-title => "ClusterSSH");

 $windows{main_window}->withdraw; # leave withdrawn until needed

 if (defined($config{console_position})

 && $config{console_position} =~ /[+-]\d+[+-]\d+/)

 {

 $windows{main_window}->geometry($config{console_position});

 }

 $menus{entrytext} = "";

 $windows{text_entry} = $windows{main_window}->Entry(

 -textvariable => \$menus{entrytext},

 -insertborderwidth => 4,

 -width => 25,

)->pack(

 -fill => "x",

 -expand => 1,

);

 $windows{main_window}->bind('' => \&exit_prog);

 # remove all Paste events so we set them up cleanly

 $windows{main_window}->eventDelete('<>');

 # Set up paste events from scratch

 if($config{key_paste} && $config{key_paste} ne "null")

 {

 $windows{main_window}->eventAdd('<>' => '<'.$config{key_paste}.'>');

 }

 if($config{mouse_paste} && $config{mouse_paste} ne "null")

 {

 $windows{main_window}->eventAdd('<>' => '<'.$config{mouse_paste}.'>');

 }

 $windows{main_window}->bind(

 '<>' => sub {

 logmsg(2, "PASTE EVENT");

 $menus{entrytext} = "";

 my $paste_text = '';

 # SelectionGet is fatal if no selection is given

 Tk::catch { $paste_text = $windows{main_window}->SelectionGet };

 if (!length($paste_text))

 {

 warn("Got empty paste event\n");

 return;

 }

 logmsg(2, "Got text :",$paste_text,":");

 # now sent it on

 foreach my $svr (keys(%servers))

 {

 send_text($svr, $paste_text) if ($servers{$svr}{active} == 1);

 }

 }

);

 $windows{help} = $windows{main_window}->Dialog(

 -popover => $windows{main_window},

 -overanchor => "c",

 -popanchor => "c",

 -font => [

 -family => "interface system",

 -size => 10,

],

 -text => "Cluster Administrator Console using SSH\n\nVersion: $VERSION.\n\n"

 . "Bug/Suggestions to http://clusterssh.sf.net/",

);

 $windows{manpage} = $windows{main_window}->DialogBox(

 -popanchor => "c",

 -overanchor => "c",

 -title => "Cssh Documentation",

 -buttons => ['Close'],

);

 my $manpage = `pod2text -l -q=\"\" $0`;

 $windows{mantext} =

 $windows{manpage}->Scrolled("Text",)->pack(-fill => 'both');

 $windows{mantext}->insert('end', $manpage);

 $windows{mantext}->configure(-state => 'disabled');

 $windows{addhost} = $windows{main_window}->DialogBox(

 -popover => $windows{main_window},

 -popanchor => 'n',

 -title => "Add Host",

 -buttons => ['Add', 'Cancel'],

 -default_button => 'Add',

);

 $windows{host_entry} = $windows{addhost}->add(

 'LabEntry',

 -textvariable => \$menus{host_entry},

 -width => 20,

 -label => 'Host',

 -labelPack => [-side => 'left',],

)->pack(-side => 'left');

 logmsg(2, "create_windows: completed");

}

sub capture_map_events()

{

	# pick up on console minimise/maximise events so we can do all windows

 $windows{main_window}->bind(

 '' => sub {

 logmsg(3, "Entering MAP");

 my $state = $windows{main_window}->state();

 logmsg(3, "state=$state previous=$config{internal_previous_state}");

 logmsg(3, "Entering MAP");

 if ($config{internal_previous_state} eq $state)

 {

 logmsg(3, "repeating the same");

 }

 if ($config{internal_previous_state} eq "mid-change")

 {

 logmsg(3, "dropping out as mid-change");

 return;

 }

 logmsg(3, "state=$state previous=$config{internal_previous_state}");

 if ($config{internal_previous_state} eq "iconic")

 {

 logmsg(3, "running retile");

 retile_hosts();

 logmsg(3, "done with retile");

 }

 if ($config{internal_previous_state} ne $state)

 {

 logmsg(3, "resetting prev_state");

 $config{internal_previous_state} = $state;

 }

 }

);

 $windows{main_window}->bind(

 '' => sub {

 logmsg(3, "Entering UNMAP");

 my $state = $windows{main_window}->state();

 logmsg(3, "state=$state previous=$config{internal_previous_state}");

 if ($config{internal_previous_state} eq $state)

 {

 logmsg(3, "repeating the same");

 }

 if ($config{internal_previous_state} eq "mid-change")

 {

 logmsg(3, "dropping out as mid-change");

 return;

 }

 if ($config{internal_previous_state} eq "normal")

 {

 logmsg(3, "withdrawing all windows");

 foreach my $server (reverse(keys(%servers)))

 {

 if ($config{unmap_on_redraw} =~ /yes/i)

 {

 $xdisplay->req('UnmapWindow', $servers{$server}{wid});

 }

 }

 $xdisplay->flush();

 }

 if ($config{internal_previous_state} ne $state)

 {

 logmsg(3, "resetting prev_state");

 $config{internal_previous_state} = $state;

 }

 }

);

}

for all key event, event hotkeys so there is only 1 key binding

sub key_event

{

 my $event = $Tk::event->T;

 my $keycode = $Tk::event->k;

 my $keysymdec = $Tk::event->N;

 my $keysym = $Tk::event->K;

 my $state = $Tk::event->s || 0;

 $menus{entrytext} = "";

	logmsg(3, "=========");

 logmsg(3, "event =$event");

 logmsg(3, "keysym =$keysym (state=$state)");

 logmsg(3, "keysymdec=$keysymdec");

 logmsg(3, "keycode =$keycode");

 logmsg(3, "state =$state");

	logmsg(3, "codetosym=$keycodetosym{$keysymdec}") if($keycodetosym{$keysymdec});

	logmsg(3, "symtocode=$keysymtocode{$keysym}");

	logmsg(3, "keyboard =$keyboardmap{ $keysym }");

	#warn("debug stop point here");

 if ($config{use_hotkeys} eq "yes")

 {

 my $combo = $Tk::event->s . $Tk::event->K;

 $combo =~ s/Mod\d-//;

 logmsg(3, "combo=$combo");

 foreach my $hotkey (grep(/key_/, keys(%config)))

 {

 my $key = $config{$hotkey};

 next if ($key eq "null"); # ignore disabled keys

 logmsg(3, "key=:$key:");

 logmsg(3, "combo=$combo");

 if ($combo =~ /^$key$/)

 {

 if ($event eq "KeyRelease")

 {

 logmsg(2, "Received hotkey: $hotkey");

 send_clientname() if ($hotkey eq "key_clientname");

 add_host_by_name() if ($hotkey eq "key_addhost");

 retile_hosts("force") if ($hotkey eq "key_retilehosts");

 exit_prog() if ($hotkey eq "key_quit");

 }

 return;

 }

 }

 }

 # look for a -d and no hosts, so quit

 exit_prog() if ($state =~ /Control/ && $keysym eq "d" and !%servers);

 # for all servers

 foreach (keys(%servers))

 {

 # if active

 if ($servers{$_}{active} == 1)

 {

 logmsg(3,

 "Sending event $event with code $keycode (state=$state) to window $servers{$_}{wid}");

 $xdisplay->SendEvent(

 $servers{$_}{wid},

 0,

 $xdisplay->pack_event_mask($event),

 $xdisplay->pack_event(

 'name' => $event,

 'detail' => $keycode,

 'state' => $state,

 'time' => time(),

 'event' => $servers{$_}{wid},

 'root' => $xdisplay->root(),

 'same_screen' => 1,

)

) || warn("Error returned from SendEvent: $!");

 }

 }

 $xdisplay->flush();

}

sub create_menubar()

{

 logmsg(2, "create_menubar: started");

 $menus{bar} = $windows{main_window}->Menu;

 $windows{main_window}->configure(-menu => $menus{bar});

 $menus{file} = $menus{bar}->cascade(

 -label => 'File',

 -menuitems => [

 [

 "command",

 "Exit",

 -command => \&exit_prog,

 -accelerator => $config{key_quit},

]

],

 -tearoff => 0,

);

 $menus{hosts} = $menus{bar}->cascade(

 -label => 'Hosts',

 -tearoff => 1,

 -menuitems => [

 [

 "command",

 "Retile Hosts",

 -command => \&retile_hosts,

 -accelerator => $config{key_retilehosts},

],

 ["command", "Capture Terminal", -command => \&capture_terminal,],

			["command", "Toggle active state", -command => \&toggle_active_state,],

 [

 "command",

 "Add Host",

 -command => \&add_host_by_name,

 -accelerator => $config{key_addhost},

],

 '',

],

);

 $menus{send} = $menus{bar}->cascade(

 -label => 'Send',

 -menuitems => [

 [

 "command",

 "Hostname",

 -command => \&send_clientname,

 -accelerator => $config{key_clientname},

],

],

 -tearoff => 1,

);

 $menus{help} = $menus{bar}->cascade(

 -label => 'Help',

 -menuitems => [

 ['command', "About", -command => sub { $windows{help}->Show }],

 [

 'command', "Documentation",

 -command => sub { $windows{manpage}->Show }

],

],

 -tearoff => 0,

);

 #$windows{main_window}->bind(

 #'' => \&key_event,

 #);

 $windows{main_window}->bind('' => \&key_event,);

 $windows{main_window}->bind('' => \&key_event,);

 logmsg(2, "create_menubar: completed");

}

main

Note: getopts returned "" if it finds any options it doesnt recognise

so use this to print out basic help

pod2usage(-verbose => 1) unless (getopts($options, \%options));

pod2usage(-verbose => 1) if ($options{'?'} || $options{h});

pod2usage(-verbose => 2) if ($options{H});

if ($options{v})

{

 print "Version: $VERSION\n";

 exit 0;

}

only get xdisplay if we got past usage and help stuff

$xdisplay = X11::Protocol->new();

if (!$xdisplay)

{

 die("Failed to get X connection\n");

}

catch and reap any zombies

sub REAPER

{

 my $kid;

 do

 {

 $kid = waitpid(-1, WNOHANG);

 logmsg(2, "REAPER currently returns: $kid");

 } until ($kid == -1 || $kid == 0);

}

$SIG{CHLD} = \&REAPER;

$debug += 1 if ($options{d});

$debug += 2 if ($options{D});

#warn("forcing high debug\n"); $debug +=4;

logmsg(2, "VERSION: $VERSION");

load_config_defaults();

load_configfile();

dump_config() if ($options{u});

evaluate_commands() if ($options{e});

load_keyboard_map();

get_clusters();

@servers = resolve_names(@ARGV);

create_windows();

create_menubar();

change_main_window_title();

logmsg(2, "Capture map events");

capture_map_events();

setup_helper_script();

open_client_windows(@servers);

Check here if we are tiling windows. Here instead of in func so

can be tiled from console window if wanted

if ($config{window_tiling} eq "yes")

{

 retile_hosts();

} else

{

 show_console();

}

build_hosts_menu();

logmsg(2, "Sleeping for a mo");

select(undef, undef, undef, 0.5);

logmsg(2, "Sorting focus on console");

$windows{text_entry}->focus();

logmsg(2, "Marking main window as user positioned");

$windows{main_window}->positionfrom('user'); # user puts it somewhere, leave it there

logmsg(2, "Setting up repeat");

setup_repeat();

Start event loop

logmsg(2, "Starting MainLoop");

MainLoop();

make sure we leave program in an expected way

exit_prog();

__END__

man/perldoc/pod page

=head1 NAME

cssh (crsh) - Cluster administration tool

=head1 SYNOPSIS

S<< cssh [options] [[user@]|] [...] >>

S<< crsh [options] [[user@]|] [...] >>

S<< cssh [options] [[user@][:port]|] [...] >>

S<< crsh [options] [[user@][:port]|] [...] >>

=head1 DESCRIPTION

The command opens an administration console and an xterm to all specified

hosts. Any text typed into the administration console is replicated to

all windows. All windows may also be typed into directly.

This tool is intended for (but not limited to) cluster administration where

the same configuration or commands must be run on each node within the

cluster. Performing these commands all at once via this tool ensures all

nodes are kept in sync.

Connections are opened via ssh so a correctly installed and configured

ssh installation is required. If, however, the program is called by "crsh"

then the rsh protocol is used (and the communications channel is insecure).

Extra caution should be taken when editing system files such as

/etc/inet/hosts as lines may not necessarily be in the same order. Assuming

line 5 is the same across all servers and modifying that is dangerous.

Better to search for the specific line to be changed and double-check before

changes are committed.

=head2 Further Notes

=over

=item *

The dotted line on any sub-menu is a tear-off, i.e. click on it

and the sub-menu is turned into its own window.

=item *

Unchecking a hostname on the Hosts sub-menu will unplug the host from the

cluster control window, so any text typed into the console is not sent to

that host. Re-selecting it will plug it back in.

=item *

If the code is called as crsh instead of cssh (i.e. a symlink called

crsh points to the cssh file or the file is renamed) rsh is used as the

communications protocol instead of ssh.

=item *

Starting the utility will be much faster with a configuration file (as this

prevents searching for required files). Generate one containing all default

entries with:

C<< cssh -u > $HOME/.csshrc >>

=item *

When using cssh on a large number of systems to connect back to a single

system (e.g. you issue a command to the cluster to scp a file from a given

location) and when these connections require authentication (i.e. you are

going to authenticate with a password), the sshd daemon at that location

may refuse connects after the number specified by MaxStartups in

sshd_config is exceeded. (If this value is not set, it defaults to 10.)

This is expected behavior; sshd uses this mechanism to prevent DoS attacks

from unauthenticated sources. Please tune sshd_config and reload the SSH

daemon, or consider using the ~/.ssh/authorized_keys mechanism for

authentication if you encounter this problem.

=item *

If client windows fail to open, try running "cssh -d <single host name>".

This will output a command to run which will test the method used by cssh

to open client windows. If you copy-and-paste this command into a window

and it fails, this is the issue. It is most likely due to the "-xrm" option

which enables "AllowSendEvents" in the terminal. Some terminal do not

require this option, other terminals have another method for enabling it.

See your terminal documention for further information.

=back

=head1 OPTIONS

Some of these options may also be defined within the configuration file.

Default options are shown as appropriate.

=over

=item -h|-?

Show basic help text, and exit

=item -H

Show full help test (the man page), and exit

=item -v

Show version information and exit

=item -d

Enable basic debugging mode (can be combined with -D)

=item -D

Enable extended debugging mode (can be combined with -d)

=item -q|-Q

Enable|Disable automatically quiting after the last client window has closed

(overriding the config file)

=item -u

Output configuration in the format used by the F<$HOME/.csshrc> file

=item -g|-G

Enable|Disable window tiling (overriding the config file)

=item -c

Use supplied file as additional cluster file (see also L<"FILES">)

=item -l $LOGNAME

Specify the default username to use for connections (if different from the

currently logged in user). NOTE: will be overridden by @

=item -T "CSSH"

Specify the initial part of the title used in the console and client windows

=item -o "-x -o ConnectTimeout=10" - for ssh connections

=item -o "" - for rsh connections

Specify arguments to be passed to ssh or rsh when making the connection.

NOTE: any "generic" change to the method (i.e. specifying the ssh port to use)

should be done in the medium's own config file (see L<ssh_config> and

F<$HOME/.ssh/config>).

=item -t ""

Specify arguments to be passed to terminals being used

=item -i

Ignore errors from unresolvable host names (i.e. because the name is an alias

within an ssh config file or similar) (see also "ignore_host_errors" in

L<"FILES">)

=item -e [user@][:port]

Display and evaluate the terminal and connection arguments so display any

potential errors. The is required to aid the evaluation.

=back

=head1 ARGUMENTS

The following arguments are support:

=over

=item [user@][:port] ...

Open an xterm to the given hostname and connect to the administration

console. An optional port number can be used if sshd is not listening

on standard port (e.g not listening on port 22) and ssh_config cannot be used.

=item ...

Open a series of xterms defined by within either /etc/clusters or

F<$HOME/.csshrc> (see L<"FILES">).

=back

=head1 KEY SHORTCUTS

The following key shortcuts are available within the console window, and all

of them may be changed via the configuration files.

=over

=item Control-q

Quit the program and close all connections and windows

=item Control-+

Open the Add Host dialogue box

=item Alt-n

Paste in the correct client name to all clients, i.e.

C<< scp /etc/hosts server:files/<Alt-n>.hosts >>

would replace the <Alt-n> with the client's name in all the client windows

=item Alt-r

Retile all the client windows

=back

=head1 FILES

=over

=item /etc/clusters

This file contains a list of tags to server names mappings. When any name

is used on the command line it is checked to see if it is a tag in

/etc/clusters (or the .csshrc file, or any additional cluster file specified

by -c). If it is a tag, then the tag is replaced with the list of servers

from the file. The file is formated as follows:

S<< [user@] [user@] [...] >>

i.e.

 # List of servers in live

 live admin1@server1 admin2@server2 server3 server4

All standard comments and blank lines are ignored. Tags may be nested, but

be aware of recursive tags.

Clusters may also be specified within the user's .csshrc file, as documented

below.

=item F</etc/csshrc> & F<$HOME/.csshrc>

This file contains configuration overrides - the defaults are as marked.

Default options are overwritten first by the global file, and then by the

user file.

=over

=item always_tile = yes

Setting to anything other than C does not perform window tiling (see also -G).

=item auto_quit = yes

Automatically quit after the last client window closes. Set to anything

other than "yes" to disable. Can be overridden by C<-Q> on the command line.

=item comms = ssh

Sets the default communication method (initially taken from the name of

program, but can be overridden here).

=item clusters =

Define a number of cluster tags in addition to (or to replace) tags defined

in the F</etc/clusters> file. The format is:

 clusters =

 = host1 host2 host3

 = user@host4 user@host5 host6

 =

As with the F</etc/clusters> file, be sure not to create recursivly nested tags.

=item console_position =

Set the initial position of the console - if empty then let the window manager

decide. Format is '++', i.e. '+0+0' is top left hand corner of the screen,

'+0-70' is bottom left hand side of screen (more or less).

=item ssh_args = "-x -o ConnectTimeout=10"

=item rsh_args =

Sets any arguments to be used with the communication method (defaults to ssh

arguments).

NOTE: The given defaults are based on OpenSSH, not commer

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

