

Forum Programmation.python IA pacman

Posté par denrou le 18 janvier 2016 à 11:31.
Licence CC By‑SA.

Étiquettes :
aucune

Sommaire

	Le jeu

	Un algorithme relativement simple

	Améliorations

Bonjour à tous,

Relativement nouveau dans le domaine de la programmation, je m’entraîne sur différents sites. L'un d'entre eux propose des problèmes sous forme de jeux et je bloque un peu sur un en particulier. Si je poste ici c'est parce que :

	j’apprécie cette communauté et je sais que des gens compétents viennent régulièrement ici

	le but du problème en question est caché : on connaît les variables en input et on doit donner en output une lettre (A, B, C, D ou E). À la fin du programme, on obtient un score qui est plus ou moins élevé. La première partie du problème consiste donc à découvrir le fonctionnement de ce jeu. C’est pourquoi je ne veux pas poster un message sur leur forum afin de ne pas trop en dévoiler.

Le jeu

Voici à quoi ressemble l’algorithme au départ avant de commencer le jeu :

import sys
import math

Auto-generated code below aims at helping you parse
the standard input according to the problem statement.

first_init_input = int(input())
second_init_input = int(input())
third_init_input = int(input())

game loop
while True:
 first_input = input()
 second_input = input()
 third_input = input()
 fourth_input = input()
 for i in range(third_init_input):
 fifth_input, sixth_input = [int(j) for j in input().split()]

 # Write an action using print
 # To debug: print("Debug messages...", file=sys.stderr)

 print("A, B, C, D or E")

En affichant les différentes variables, on trouve assez rapidement leur signification et le but du jeu.

Le jeu est donc un jeu de plateau en tour par tour qui simule le jeu Pac-Man.

	Les variables d’initialisations first_init_input et second_init_input déterminent à la taille du plateau et third_init_input nous donne le nombre de joueurs sur le plateau (nombres de fantômes + 1, Pac-Man).

	À chaque tour la position des joueurs est donnée par les variables fifth_input et sixth_input

	les autres variables (first... fourth_input) contiennent un caractère (# ou _). Ils déterminent l'environnement de Pac-Man : 4 variables pour les 4 directions dans lequel il peut aller. # correspond à un mur (impossible d'aller dans cette direction) et _ à un chemin libre.

Par conséquent, la lettre donnée que l'on doit afficher donne la direction de Pac-Man pour le tour suivant. Le jeu s’arrête lorsqu'un fantôme et Pac-Man se trouve sur la même case. Plus Pac-Man explore la carte, plus notre score sera élevé.

Un algorithme relativement simple

Pour découvrir le jeu et voir ce qu'on peut faire, j'ai implémenté un algorithme dans lequel Pac-Man explore la carte sans jamais se soucier des fantômes et sans revenir en arrière. Et pour visualiser ce qu'il se passe, j'ai créé une classe.

import sys
import math
from string import ascii_uppercase

class Graph:
 '''
 At the beginning, all nodes are supposed to be connected
 '''
 def __init__(self, width, height):
 self.width = width
 self.height = height
 self.node = {}
 for y in range(self.height):
 for x in range(self.width):
 if x > 0:
 self.addEdge(self.getNode(x, y), self.getNode(x - 1, y))
 if x < self.width - 1:
 self.addEdge(self.getNode(x, y), self.getNode(x + 1, y))
 if y > 0:
 self.addEdge(self.getNode(x, y), self.getNode(x, y - 1))
 if y < self.height - 1:
 self.addEdge(self.getNode(x, y), self.getNode(x, y + 1))

 def getNode(self, x, y):
 return str(y * self.width + x)

 def addNode(self, i):
 if self.node.get(i) == None:
 self.node[i] = {'name': '?', 'neighbours': [], 'type': 'unknown'}

 def addEdge(self, i, j):
 self.addNode(i)
 if not j in self.node[i]:
 self.node[i]['neighbours'].append(j)

 def removeEdge(self, i, j):
 self.node[i]['neighbours'].remove(j)
 self.node[j]['neighbours'].remove(i)

 def updateNode(self, entity = None):
 i = self.getNode(entity.getPos()['x'], entity.getPos()['y'])
 if 0 <= int(i) <= self.width * self.height:
 self.node[i]['name'] = str(entity.getName())
 self.node[i]['type'] = str(entity.getType())

 def constructWall(self, i):
 self.node[i]['type'] = 'wall'
 self.node[i]['name'] = '{:^3}'.format('#')
 for n in self.node[i]['neighbours']:
 self.removeEdge(n, i)

 def manhatanDistance(self, pacman, ghosts):
 x1 = pacman.getPos()['x']
 y1 = pacman.getPos()['y']
 distance = {}
 direction = []
 for g in ghosts:
 x2 = g.getPos()['x']
 y2 = g.getPos()['y']
 distance[g.getName()] = abs(x1 - x2) + abs(y1 - y2)
 return distance

 def __str__(self):
 s = ""
 for y in range(self.height):
 for x in range(self.width):
 s = s + '{:^3}'.format(self.node[self.getNode(x, y)]['name'])
 if x < self.width - 1:
 s += str(' ')
 if y < self.height - 1:
 s += str('\n')
 return str(s)

class Ghost:
 def __init__(self, name, x = -1, y = -1):
 self.pos = {"x": x, "y": y}
 self.name = name
 self.type = 'ghost'

 def setPos(self, x, y):
 self.pos['x'] = x
 self.pos['y'] = y

 def getPos(self):
 return self.pos

 def getName(self):
 return self.name

 def getType(self):
 return self.type

class Pacman:
 def __init__(self, x = -1, y = -1):
 self.pos = {"x": x, "y": y}
 self.name = 0
 self.type = 'pacman'

 def setPos(self, x, y):
 self.pos['x'] = x
 self.pos['y'] = y
 self.name += 1

 def getPos(self):
 return self.pos

 def getName(self):
 return self.name

 def getType(self):
 return self.type

height = int(input())
width = int(input())
maze = Graph(width, height)

players = int(input())

ghosts = [Ghost(name) for name in ascii_uppercase[:(players - 1)]]
pacman = Pacman()

turn = 0
go = 'right'

game loop
while True:

 down = input() == '_'
 right = input() == '_'
 up = input() == '_'
 left = input() == '_'

 for i in range(players):
 x, y = [int(j) for j in input().split()]
 if i < players - 1:
 ghosts[i].setPos(x, y)
 maze.updateNode(ghosts[i])
 else:
 pacman.setPos(x, y)
 maze.updateNode(pacman)

 if not down:
 maze.constructWall(maze.getNode(x, y - 1))
 if not up:
 maze.constructWall(maze.getNode(x, y + 1))
 if not left:
 maze.constructWall(maze.getNode(x - 1, y))
 if not right:
 maze.constructWall(maze.getNode(x + 1, y))

 # Just don't go back where you were
 if (go == 'right') & (not right):
 go = [dir for dir in ["right", "left", "up", "down"] if eval(dir) & (dir != "left")][0]
 if (go == 'left') & (not left):
 go = [dir for dir in ["right", "left", "up", "down"] if eval(dir) & (dir != "right")][0]
 if (go == 'down') & (not down):
 go = [dir for dir in ["right", "left", "up", "down"] if eval(dir) & (dir != "up")][0]
 if (go == 'up') & (not up):
 go = [dir for dir in ["right", "left", "up", "down"] if eval(dir) & (dir != "down")][0]
 dir = {"right":"A", "left":"E", "up":"D", "down":"C"}
 print(dir[go])

 # If I'm close to lose the game, print the maze
 if min(maze.manhatanDistance(pacman, ghosts).values()) <= 2:
 print(maze, file=sys.stderr)

 turn += 1

Le résultat juste avant de perdre ressemble à ça :

 ? ?
 ? ?
 ? ?
 ? B B B B B B B B B B B B ? ? ? ? ? ? ? ? A A A A A A ?
 ? B ? ? ? ? B ? ? ? ? ? B ? ? ? ? ? ? ? ? A ? ? ? ? A ?
 ? B ? ? ? ? B ? ? ? ? ? B ? ? ? ? ? ? ? ? A ? ? ? ? A ?
 ? B ? ? ? ? B ? ? ? ? ? B ? ? ? ? ? ? ? ? A ? ? ? ? A ?
 ? B ? ? ? ? B B B B B B B ? ? ? ? ? A A A A A A A A A ?
 ? B ? ? ? ? ? ? ? B ? ? ? ? ? ? ? ? A ? ? A ? ? ? ? ? ?
 ? B ? ? ? ? ? ? ? B ? ? ? ? ? ? ? ? A ? ? A ? ? ? ? ? ?
 ? B B B B B B ? ? B B B B ? ? A A A A ? ? A ? ? ? ? ? ?
 ? ? ? ? ? ? B ? ? ? ? ? B ? ? A ? ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? ? B ? ? ? ? ? B ? ? A ? ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? ? B ? ? ? ? ? B B A A ? ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? ? B ? ? ? ? ? ? ? A ? ? ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? ? B ? ? ? ? A A A A B B ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? # 65 # ? ? ? ? ? ? ? ? ? ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? # 64 # ? ? ? C C C ? ? D ? ? ? ? A ? ? ? ? ? ?
 ? ? ? ? ? # 63 # ? ? ? ? ? C ? ? ? ? ? ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? # 62 # ? ? ? ? ? C C C C C C ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? # 61 # ? ? ? ? ? ? ? ? ? ? C ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? # 60 # ? ? ? ? ? ? ? ? ? ? C ? ? ? ? ? ? ? ? ?
 ? ? ? ? ? ? 59 ? ? ? ? ? ? ? ? ? ? ? C C C C ? ? C C C ?
 ? ? ? ? ? # 58 # ? ? ? ? ? ? ? ? ? ? ? ? ? C ? ? ? ? C ?
 ? ? ? ? ? # 57 # ? ? ? ? ? # # ? # # # # # C ? ? ? ? C ?
 ? ? ? ? ? # 56 ? ? ? ? ? ? 1 2 3 4 5 6 7 8 C # ? C C C ?
 ? ? ? ? ? # 55 # ? ? ? ? ? # # # # # ? # # C # ? C ? ? ?
 ? # # ? # # 54 # ? ? ? ? ? ? ? ? ? ? ? ? # C # # C # # ?
 # 48 49 50 51 52 53 # ? ? ? ? ? ? ? ? ? ? ? ? # C C C C 16 17 #
 # 47 # # # # # ? ? ? ? ? ? ? ? ? ? ? ? ? ? # # # # # 18 #
 # 46 # # # # # # # # # # ? # # ? # # # # # # # # # # 19 #
 # 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 #
 ? # ?
 ? ?
 ? ?

Améliorations

Voilà, maintenant j'aimerais aller un plus loin et développer un algorithme qui permettrait d'optimiser le parcours du labyrinthe pour le découvrir le plus possible.

La classe que j'ai implémenté me permet d'ajouter facilement des fonctions de recherche de chemin le plus court (BFS par exemple) entre les fantômes et Pac-Man, mais ce n'est pas ce qu'on veut ici.

Une idée que j'ai eu a été d'établir un score correspondant à la distance séparant un fantôme de Pac-Man dans une direction donnée. La direction à prendre étant celle dont le score est le plus haut. Mais après avoir implémenté cette fonction, Pac-Man s'est mis à tourner en rond sans explorer le labyrinthe.

Avez-vous des idées pour explorer le labyrinthe sans se faire attraper ? Une recherche d'IA et pacman sur un moteur de recherche ne renvoie des informations que sur l'IA des fantômes et souvent en connaissant le labyrinthe (dans ce cas une recherche de chemin le plus court marche bien).

Je reste également ouvert à toutes les critiques que vous pourriez avoir sur mon code, je ne demande qu'à progresser.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

