

Forum Programmation.python Mon premier code python

Posté par Eh_Dis_Mwan le 22 janvier 2019 à 19:27.
Licence CC By‑SA.

Étiquettes :
aucune

Bonjour,

Voilà dans mon apprentissage de python, j'ai pondu ce code

import datetime
from tkinter import Entry, Button, Scrollbar
from tkinter import Listbox, StringVar, Tk
from tkinter import Label, LabelFrame, Menu, ANCHOR, E, N, S
from tkinter.colorchooser import askcolor
from tkinter.messagebox import showinfo
import os
import sys
import math
import pytz
###VARIABLES
obj = dict()
listtz = list(pytz.all_timezones)
BINPATH = os.path.dirname(os.path.realpath(__file__))
with open("{}/tz.conf".format(BINPATH), "r") as conffile:
 TIMEZONES = conffile.readlines()
 TIMEZONES = list(map(lambda s: s.strip(), TIMEZONES))
citytable = []
for element in TIMEZONES:
 tmpelement = element.split("/")
 try:
 citytable.append(tmpelement[::-1])
 except:
 pass
TIMEZONES = []
citytable.sort()
for element in citytable:
 element.reverse()
 TIMEZONES.append("/".join(element))
listtz = [x for x in listtz if x not in TIMEZONES]
print("Timezones initialization....OK")
colorsdic = dict()
try:
 with open("{}/colors.conf".format(BINPATH), "r") as CONFFILE:
 COLORS = CONFFILE.readlines()
 COLORS = list(map(lambda s: s.strip(), COLORS))
 for i in COLORS:
 j = i.split(":")
 colorsdic[str(j[0])] = (j[1])

except:
 with open("{}/colors.conf".format(BINPATH), "w") as f:
 f.write('bgcolor:bisque\nfgcolor:maroon\nbgclock:black\nfgclock:yellow\nbgday:white\nfgday:black\n')
 with open("{}/colors.conf".format(BINPATH), "r") as conffile:
 COLORS = conffile.readlines()
 COLORS = list(map(lambda s: s.strip(), COLORS))

 for i in COLORS:
 j = i.split(":")
 colorsdic[j[0]] = (j[1])
COLORDAY = [colorsdic['bgday'],colorsdic['fgday']]
COLORCLOCK = [colorsdic['bgclock'],colorsdic['fgclock']]
COLORFRAME = [colorsdic['bgcolor'],colorsdic['fgcolor']]

print("Colors initialization ...OK")
framewidth = 0
for element in listtz:
 lenframe = len(element)
 if lenframe > framewidth:
 framewidth = lenframe
i = 0
column = 1
row = 0
rowmax = 7
relief = 'sunken'
city = 'localtime'
bgcolor = '#AA0000'
fgcolor = 'yellow'
############CLASS
class clock:
 """
 Defines displays of the CLOCKS
 """
 def __init__(self,city,bgcol,fgcol,bgclock,fgclock,bgday,fgday,fontsize,column,row,relief):
 if city == 'localtime':
 pass
 else:
 self.timezone = pytz.timezone(city)
 self.bgcol = bgcol
 self.fgcol = fgcol
 self.bgclock = bgclock
 self.fgclock = fgclock
 self.bgday = bgday
 self.fgday = fgday
 self.column = column
 self.row = row
 self.tz = city
 self.bgcol = bgcol
 self.fgcol = fgcol
 self.fontsize = fontsize
 if city == 'localtime':
 self.date = datetime.datetime.now()
 else:
 self.date = datetime.datetime.now(self.timezone)
 self.daybefore = int(self.date.day)
 self.monthbefore = int(self.date.month)
 self.yearbefore = int(self.date.year)
 self.Frame = LabelFrame(root,bg=self.bgcol,fg=self.fgcol,highlightbackground="yellow", highlightcolor="green", highlightthickness=2)
 self.temptable = []
 self.labeltext = StringVar()
 self.entrydatetext = StringVar()
 self.entryhourtext = StringVar()
 self.labelsecondtext = StringVar()
 self.display_cal()
 self.update_window()

 def display_cal(self):
 self.label = Label(self.Frame,textvariable=self.labeltext,width=15,height=int(framewidth/5),bg=self.bgcol,fg=self.fgcol)
 self.label.config(font=("URW Gothic", self.fontsize+2,"bold"))
 self.temptable = self.tz.split("/")
 if len(self.temptable) == 1:
 self.labeltext.set('Localtime')
 self.labeltext.set(self.temptable[-1].upper())
 self.entryhour = Entry(self.Frame,textvariable=self.entryhourtext,width=5,bg=self.bgclock,fg=self.fgclock,relief=relief)
 self.entrydate = Entry(self.Frame,textvariable=self.entrydatetext,width=10,bg=self.bgday,fg=self.fgday,relief=relief)
 self.labelsecond = Label(self.Frame,textvariable=self.labelsecondtext,bg=self.bgcol,fg=self.fgcol)
 self.entrydate.config(font=("Swiss 721",14))
 self.entryhour.config(font=("Serto Kharput",28,"bold"))
 self.labelsecond.config(font=("Console",8))
 self.label.grid(column=0,row=0,rowspan=2)
 self.entryhour.grid(column=1,row=0)
 self.entrydate.grid(column=1,row=1)
 def update_window(self):
 if self.tz == 'localtime':
 self.date = datetime.datetime.now()
 else:
 self.date = datetime.datetime.now(self.timezone)
 self.place = self.tz.upper()
 self.year = str(self.date.year)
 if int(self.year) > self.yearbefore:
 showinfo("HAPPY","Happy new year {}".format(self.place))
 self.yearbefore = int(self.date.year)
 self.month = str(self.date.month).zfill(2)
 if int(self.month) > self.monthbefore:
 showinfo("WARNING","The month has changed in {}".format(self.place))
 self.monthbefore = int(self.date.month)
 self.day = str(self.date.day).zfill(2)
 if int(self.day) > self.daybefore:
 showinfo("WARNING","The day has changed in {}".format(self.place))
 self.daybefore = int(self.date.day)
 self.hour = str(self.date.hour).zfill(2)
 self.minute = str(self.date.minute).zfill(2)
 self.second = str(self.date.second).zfill(2)
 self.calendar = "{}/{}/{}".format(self.day,self.month,self.year)
 self.time = "{}:{}".format(self.hour,self.minute)
 self.entrydatetext.set(self.calendar)
 self.entryhourtext.set(self.time)
 self.labelsecondtext.set(self.second)
 self.label.grid(column=0,row=0,rowspan=2)
 self.entryhour.grid(column=1,row=0)
 self.entrydate.grid(column=1,row=1)
 self.labelsecond.grid(column=2,row=0)
 self.Frame.grid(column=self.column,row=self.row)
 root.after(1000,self.update_window)
 def removeinstance(self):
 with open("{}/tz.conf".format(BINPATH), 'r') as f1:
 lines = f1.readlines()
 with open("{}/tz.conf".format(BINPATH), 'w') as f:
 for line in lines:
 if self.tz not in line:
 f.write(line)
 f.truncate()
 os.execl(sys.executable, os.path.abspath(__file__), *sys.argv)
 def __str__(self):
 return(self)
#DEF
def addtz(str,column,row):
 locallisttz = []
 str=str+'/'
 OptionFrame.grid_forget()
 for widget in OptionFrame.winfo_children():
 widget.grid_forget()
 SetTzList.delete(0, 'end')
 LabelText.set('Add timezone')
 def CurSelet(evt):
 global row
 global column
 global COLORDAY
 global COLORFRAME
 global COLORCLOCK
 global relief
 if (row + column) %2 == 0:
 (bgday, fgday)=COLORDAY
 (bgcolor,fgcolor)=COLORFRAME
 (bgclock,fgclock)=COLORCLOCK
 relief='sunken'
 else:
 (fgday, bgday)=COLORDAY
 (fgcolor,bgcolor)=COLORFRAME
 (fgclock,bgclock)=COLORCLOCK
 relief='ridge'
 value = (SetTzList.get(ANCHOR))
 with open("{}/tz.conf".format(BINPATH), 'a') as f1:
 f1.write("{}{}\n".format(str,value))
 obj[value]=clock("{}{}".format(str,value),bgcolor,fgcolor,bgclock,fgclock,bgday,fgday,10,column,row,relief)
 DelTZ.add_command(label=value, command=obj[value].removeinstance)
 if row < rowmax:
 row += 1
 else:
 row = 0
 column += 1

 for element in listtz:
 locallisttz=[x for x in listtz if str in x]
 LabelTitle.grid(column=0, row=1)
 SetTzList.grid(column=0, row=2)
 table=[]
 for entries in locallisttz:
 table=entries.split('/')
 if len(table) > 2:
 SetTzList.insert("end", "{}/{}".format(table[1],table[2]))
 else:
 SetTzList.insert("end", table[1])
 value=SetTzList.get(ANCHOR)
 value=SetTzList.bind('<<ListboxSelect>>', CurSelet)
 scrollbar.grid(column=1,row=2,sticky=E+N+S)
 scrollbar.config(command = SetTzList.yview)
 SetTzList.config(yscrollcommand=scrollbar.set)
 ButtonCancel.grid(column=0,row=4,columnspan=2)
 OptionFrame.grid(column=0,row=0,rowspan=rowmax+2)
def SetColors():
 OptionFrame.grid_forget()
 for widget in OptionFrame.winfo_children():
 widget.grid_forget()
 SetTzList.delete(0, 'end')
 LabelText.set('Setcolors')
 OptionFrame.grid(column=0,row=0,rowspan=rowmax+1)
 def changecolor(key):
 newlist=[]
 (a, newcolor) = askcolor(color=colorsdic[key],title='Choose...')
 if newcolor:
 for oldkey, oldvalues in colorsdic.items():
 if oldkey == key:
 oldvalues=newcolor
 newlist.append("{}:{}\n".format(oldkey,str(oldvalues)))
 with open("{}/colors.conf".format(BINPATH), 'w') as f1:
 f1.writelines(newlist)
 os.execl(sys.executable, os.path.abspath(__file__), *sys.argv)
 Buttonbg=Button(OptionFrame,text=colorsdic['bgcolor'],bg=colorsdic['bgcolor'],width=7,command=lambda: changecolor('bgcolor'))
 Buttonbg.grid(column=0,row=0)
 Buttonfg=Button(OptionFrame,text=colorsdic['fgcolor'],bg=colorsdic['fgcolor'],width=7,command=lambda: changecolor('fgcolor'))
 Buttonfg.grid(column=0,row=1)
 Buttonbgclock=Button(OptionFrame,text=colorsdic['bgclock'],bg=colorsdic['bgclock'],width=7,command=lambda: changecolor('bgclock'))
 Buttonbgclock.grid(column=1,row=0)
 Buttonfgclock=Button(OptionFrame,text=colorsdic['fgclock'],bg=colorsdic['fgclock'],width=7,command=lambda: changecolor('fgclock'))
 Buttonfgclock.grid(column=1,row=1)
 Buttonbgday=Button(OptionFrame,text=colorsdic['bgday'],bg=colorsdic['bgday'],width=7,command=lambda: changecolor('bgday'))
 Buttonbgday.grid(column=2,row=0)
 Buttonfgday=Button(OptionFrame,text=colorsdic['fgday'],bg=colorsdic['fgday'],width=7,command=lambda: changecolor('fgday'))
 Buttonfgday.grid(column=2,row=1)
 ButtonCancel.grid(column=0,row=2,columnspan=3)
def info():
 OptionFrame.grid_forget()
 for widget in OptionFrame.winfo_children():
 widget.grid_forget()
 SetTzList.grid_forget()
 SetTzList.delete(0, 'end')
 LabelText.set('Developped...')
 OptionFrame.config(text="?")
 LabelTitle.grid(column=0, row=0)
 labelGPL=Label(OptionFrame,text="under GPL",bg=fgcolor,fg=bgcolor,width=16)
 labelname=Label(OptionFrame,text="by David LUCAS",bg=bgcolor,fg=fgcolor,width=16)
 labelmail=Label(OptionFrame,text="davlucas@gmail.com",bg=bgcolor,fg=fgcolor,width=16)
 labelthanks=Label(OptionFrame,text="thanks:",bg=fgcolor,fg=bgcolor,width=16)
 labelfunmooc=Label(OptionFrame,text="INRIA and fun-mooc",bg=bgcolor,fg=fgcolor,width=16)
 labelryoko=Label(OptionFrame,text="Ryoko SHINOHARA",bg=bgcolor,fg=fgcolor,width=16)
 labelGPL.grid(column=0, row=1)
 labelname.grid(column=0, row=2)
 labelmail.grid(column=0,row=3)
 labelthanks.grid(column=0, row=4)
 labelfunmooc.grid(column=0, row=5)
 labelryoko.grid(column=0, row=6)
 OptionFrame.grid(column=0,row=0,rowspan=rowmax+1)
 ButtonCancel.grid(column=0,row=7)
def refresh():
 os.execl(sys.executable, os.path.abspath(__file__), *sys.argv)
############MAIN
root=Tk()
root.title("Clock ")
menubar = Menu(root)
LabelText=StringVar()
OptionFrame = LabelFrame(root, text='SETTINGS',width=int(framewidth/1.5))
SetTzList = Listbox(OptionFrame,width=int(framewidth/1.5),bg='white',fg='black')
scrollbar = Scrollbar(OptionFrame,width=5,borderwidth=1)
LabelTitle = Label(OptionFrame, textvariable=LabelText)
ButtonCancel = Button(OptionFrame,text='CANCEL',width=6,command=OptionFrame.grid_forget)
obj_localtime=clock(city,'green','black','black','yellow','green','black',8,column,row,relief)
row+=1
for city in TIMEZONES:
 if (row + column) %2 == 0:
 (bgday, fgday)=COLORDAY
 (bgcolor,fgcolor)=COLORFRAME
 (bgclock,fgclock)=COLORCLOCK
 relief='sunken'
 else:
 (fgday, bgday)=COLORDAY
 (fgcolor,bgcolor)=COLORFRAME
 (fgclock,bgclock)=COLORCLOCK
 relief='ridge'
 obj[city]=clock(city,bgcolor,fgcolor,bgclock,fgclock,bgday,fgday,10,column,row,relief)
 if row < (rowmax):
 row += 1
 else:
 row = 0
 column += 1
tzmenu = Menu(menubar, tearoff=0)
AddTZ= Menu (tzmenu,tearoff=0)
AddTZ.add_command(label='Africa',command= lambda: addtz('Africa',column,row))
AddTZ.add_command(label='America',command= lambda: addtz('America',column,row))
AddTZ.add_command(label='Antarctica',command= lambda: addtz('Antarctica',column,row))
AddTZ.add_command(label='Asia',command= lambda: addtz('Asia',column,row))
AddTZ.add_command(label='Australia',command= lambda: addtz('Australia',column,row))
AddTZ.add_command(label='Canada',command= lambda: addtz('Canada',column,row))
AddTZ.add_command(label='Europa',command= lambda: addtz('Europe',column,row))
AddTZ.add_command(label='Indian',command= lambda: addtz('Indian',column,row))
AddTZ.add_command(label='Pacific',command= lambda:addtz('Pacific',column,row))
AddTZ.add_command(label='USA',command= lambda:addtz('US',column,row))
AddTZ.add_command(label='Etc',command= lambda:addtz('Etc',column,row))
tzmenu.add_cascade(label="Add timezone",menu=AddTZ)
DelTZ= Menu (tzmenu,tearoff=0)
for element in TIMEZONES:
 DelTZ.add_command(label=element, command=obj[element].removeinstance)
tzmenu.add_cascade(label="Remove timezone",menu=DelTZ)
color=Menu(menubar,tearoff=0)
color.add_command(label='change colors settings',command=SetColors)
menubar.add_cascade(label="Timezones Operations", menu=tzmenu)
menubar.add_cascade(label="Set Colors", menu=color)
menubar.add_separator()
About=Menu(menubar,tearoff=0)
About.add_command(label='?',command=info)
About.add_command(label='Refresh display',command=refresh)
About.add_command(label='Quit',command=root.destroy)
menubar.add_cascade(label='About and Refresh',menu=About)
root.config(menu=menubar)
root.mainloop()

Donc, comme vous pouvez le voir, je suis parti d'un timer et puis j'ai rajouté des horloges selon différentes timezones, au début sans classe, j(ai vite vu l'avantage de programmé en objet.

Même si ce code doit vous faire rire (pylint le note -6 quelque chose, c'est que c'est pas terrible) , j'en suis content et ravi.

Néanmoins, persiste un problème, que je pense de design mais je préfère avoir confirmation:

Chaque horloge est donc une classe qui actualise son affichage toutes les secondes.

Donc, si je détruit la frame lors de la supression d'une TZ, cela n'a aucune conséquence: l'objet est bloqué dans la func update_clock. Ma question est donc : est il possible de supprimer subitement une instance de classe et de la forcer à s'arrêter de tourner ?

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

