

Forum Programmation.python PyGTK et les threads.

Posté par thor_tue le 01 septembre 2010 à 18:26.

Étiquettes :
aucune

	Bonjour. J'essaye de faire la synthèse de ce que j'ai glané sur la toile à propos de pygtk et les threads. J'essaye donc un programme très simple d'expérimentation. J'ai une classe principale, une qui gère 2 threads et une classe thread proprement dite.

Mon problème : lorsque les threads 1 et 2 sont lancés simultanément, j'ai toujours un seul des deux labels qui est mis à jour (analogie avec une situation XOR).

Je commence à bloquer, je n'ai pas trouvé de documentation vraiment approfondie sur ce sujet. D'avance merci.

#!/usr/bin/env python

-*- coding: utf-8 -*-

from threads_manager import ThreadsManager

import gobject

gobject.threads_init() # <-----

import gtk

class Main:

 def __init__(self):

 self.window = gtk.Window()

 self.button1 = gtk.Button('Start/stop thread 1')

 self.button2 = gtk.Button('Start/stop thread 2')

 self.labels = []

 self.labels.append(gtk.Label('*'))

 self.labels.append(gtk.Label('*'))

 self.table = gtk.Table()

 self.table.attach(self.labels[0], 0, 1, 0, 1, xpadding=10)

 self.table.attach(self.button1, 1, 2, 0, 1)

 self.table.attach(self.labels[1], 0, 1, 1, 2, xpadding=10)

 self.table.attach(self.button2, 1, 2, 1, 2)

 self.window.add(self.table)

 self.threads_manager = ThreadsManager(self)

 self.button1.connect('clicked', self.threads_manager.switch_thread_state, 1)

 self.button2.connect('clicked', self.threads_manager.switch_thread_state, 2)

 self.window.connect('destroy', self.quit)

 self.window.set_position(gtk.WIN_POS_CENTER)

 self.window.show_all()

 def main(self):

 gtk.main()

 return 0

 def quit(self, widget_window):

 # À finir. Informer les threads qu'ils doivent stopper afin de

 # quitter proprement ?

 gtk.main_quit()

if __name__ == '__main__':

 main = Main()

 main.main()

#!/usr/bin/env python

-*- coding: utf-8 -*-

import threading

from my_thread import MyThread

class ThreadsManager:

 def __init__(self, main):

 self.main = main

 self.th1 = MyThread(self.main, 1)

 self.th2 = MyThread(self.main, 2)

 def switch_thread_state(self, widget_button, nb):

 if nb == 1:

 if self.th1.is_running == True:

 self.th1.stop()

 else:

 self.th1.start()

 else: # Therefore nb == 2

 if self.th2.is_running == True:

 self.th2.stop()

 else:

 self.th2.start()

#!/usr/bin/env python

-*- coding: utf-8 -*-

import threading, time

import gobject

import gtk

class MyThread(threading.Thread):

 def __init__(self, main, nb):

 threading.Thread.__init__(self)

 self.main = main

 self.nb = nb

 self.is_running = False

 def start(self):

 print 'start thread', self.nb

 self.is_running = True

 while self.is_running == True:

 gobject.idle_add(self.update_label) # <-----

 time.sleep(0.1)

 gtk.main_iteration() # <-----

 def stop(self):

 print 'stop thread', self.nb

 self.is_running = False

 def update_label(self):

 # Le but de cette fonction est de montrer comment modifier

 # un objet gtk dans la boucle principale depuis un thread.

 self.main.labels[self.nb-1].set_text(str(time.time()))

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

