

Forum Programmation.python Un prototype de relais SMTP vers MAPI en python

Posté par David Sporn (site web personnel) le 03 avril 2009 à 18:58.

Étiquettes :
aucune

	J'ai voulu écrire ce code suite à la limitation, à mon boulot, de l'envoi de mail via SMTP : c'est restreint aux adresses internes depuis quelques mois. Pour envoyer des mails à l'extérieur, on doit passer par MAPI (et donc Outlook).

C'est un premier jet, qui fonctionne, mais est très limité (un seul destinataire, le corps du message est le source du mail d'origine)

Pour arriver à mes fins, j'ai utilisé un serveur smtp en python et extensible : http://www.hare.demon.co.uk/pysmtp.html

Pour le code de création du message et de l'envoi, j'ai consulté la doc des objets OLE idoines sur MSDN : http://msdn.microsoft.com/fr-fr/library/ms268731(VS.80).aspx

(c)2009 David SPORN

#

A brain-dead Python SMTP to MAPI relay server based on the smtps, smtplib and mapi

packages.

#

DISCLAIMER

You are free to use this code in any way you like, subject to the

Python disclaimers & copyrights. I make no representations about the

suitability of this software for any purpose. It is provided "AS-IS"

without warranty of any kind, either express or implied. So there.

#

Sources

http://code.activestate.com/recipes/149461/

smtps.py

"""

smtp2mapi.py -- A very simple & dumb Python SMTP to MAPI relay server. It uses

smtps for the server side and MAPI for the client side. This is

intended for use as a proxy to an Exchange server that is restricted to MAPI

(e.g. for 'security purpose').

This blocks, waiting for RFC821 messages from clients on the given

port. When a complete SMTP message is received, it connect to the

Exchange server using the Outlook OLE component, convert the

message and send it. Obviously, Outlook must be present.

All processing is single threaded. It generally handles errors

badly. It fails especially badly if DNS or the resolved mail host

hangs. DNS or mailhost failures are not propagated back to the client,

which is bad news.

The mail address 'shutdown@shutdown.now' is interpreted

specially. This gets around a Python 1.5/Windows/WINSOCK bug that

prevents this script from being interrupted.

"""

import sys, smtps, string, smtplib, rfc822, StringIO, win32com.client.dynamic, re

#Default Mapi profile

DEFAULT_MAPI_PROFILE = "Outlook"

#

#

This extends the smtps.SMTPServerInterface and specializes it to

proxy requests onwards. It uses DNS to resolve each RCPT TO:

address, then uses smtplib to forward the client mail on the

resolved mailhost.

#

class SMTPService(smtps.SMTPServerInterface):

 def initMapi(self):

	self.outlook = win32com.client.dynamic.Dispatch("Outlook.Application")

	self.mapi = self.outlook.GetNamespace("MAPI")

	self.mapi.Logon(DEFAULT_MAPI_PROFILE)

	

 def quitMapi(self):

	self.mapi.Logoff()

	self.mapi = None

	

 def __init__(self):

 self.savedTo = []

 self.savedMailFrom = ''

 self.shutdown = 0

	self.initMapi()

 def mailFrom(self, args):

 # Stash who its from for later

 self.savedMailFrom = smtps.stripAddress(args)

 def rcptTo(self, args):

 # Stashes multiple RCPT TO: addresses

 self.savedTo.append(args)

 def data(self, args):

 data = args

 sys.stdout.write('Creating message...\n\r')

 subject=self.getSubject(args)

 message = self.outlook.CreateItem(0)

	message.Body = data

	message.Subject = subject

 for addressee in self.savedTo:

 toHost, toFull = smtps.splitTo(addressee)

 # Treat this TO address speciallt. All because of a

 # WINSOCK bug!

 if toFull == 'shutdown@shutdown.now':

 self.shutdown = 1

 return

 sys.stdout.write('Adding recipient ' + toFull + '...')

	 message.To = toFull

 sys.stdout.write('Sending message...\n\r')

	message.Send()

 self.savedTo = []

 def quit(self, args):

 if self.shutdown:

 print 'Shutdown at user request\n\r'

 sys.exit(0)

 def frobData(self, data):

 hend = string.find(data, '\n\r')

 if hend != -1:

 rv = data[:hend]

 else:

 rv = data[:]

 rv = rv + 'X-Sporniket: Python SMTP to MAPI Relay'

 rv = rv + data[hend:]

 return rv

 def getSubject(self, data):

	hstart = string.find(data, 'Subject: ')

 if hstart != -1:

 rv = data[hstart+9:]

 else:

 return ''

 hend = string.find(rv, '\n\r')

 if hend != -1:

 rv = rv[:hend]

 else:

 rv = rv[:]

 return rv

def Usage():

 print """Usage pyspy.py port

Where:

 port = Client SMTP Port number (ie 25)"""

 sys.exit(1)

if __name__ == '__main__':

 if len(sys.argv) != 2:

 Usage()

 port = int(sys.argv[1])

 service = SMTPService()

 server = smtps.SMTPServer(port)

 print 'Python SMTP to MAPI Relay Ready. (c)2009 David SPORN\n\r'

 server.serve(service)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

