

Forum Programmation.shell Calcul occupation disque dur d'un exécutable

Posté par Kfadelk le 08 avril 2013 à 10:15.
Licence CC By‑SA.

Étiquettes :

	shell

	bash

	profilage

Bonjour à tous

Pour tracer la consommation disque dur lors de l'exécution d'un logiciel de traitement d'images que l'on développe dans ma boîte, j'ai développé rapidement un petit script shell qui fait à intervalle régulier des "df" et exporte les résultats au format CSV.

De la même façon, pour tracer la consommation CPU j'utilise "top" en mode batch.

Dans les deux cas mes scripts marchent très bien mais je suis confronté à des difficultés :

- le parsing de la sortie des commandes "df" et "top" n'est pas évident… Si le nom du système de fichier est trop long, "df" saute une ligne. Le format de sortie de la commande "top" n'est pas le même selon la version et la machine, etc…

- le parsing à faire dépend de la langue

- on ne peut pas personnaliser les commandes pour ne calculer et n'afficher que les informations que l'on souhaite

Bref, j'ai atteint un peu les limites de ce système et je cherche un moyen d'obtenir ces informations autrement. Avez-vous une idée ?

Exemple de mon script de profilage de la consommation disque dur :

#!/bin/bash

function usage
{
cat << EOF
usage: `basename $0` [-d <delay>] [-p <proc_name>] [-f <path>]

This script profile the amount of free memory on hard driver, using 'df' command
Optionnaly, the profiling can be started when the execution of a command is detected, and stopped with it.

OPTIONS:
 -h Show this help
 -d Sampling rate (<delay> should be in seconds)
 -p Name of the processus to track
 -f Path to the file system to analyze
EOF
}

arguments par defaut
delay=3
proc=""
path="/"

lecture des arguments
while getopts ":hd:p:f:" opt ; do
 case $opt in
 h)
 usage
 exit 0;;
 d)
 delay=$OPTARG;;
 p)
 proc=$OPTARG;;
 f)
 path=$OPTARG;;
 \?)
 echo "Invalid option: -$OPTARG" >&2
 usage
 exit 1;;
 *)
 echo -$OPTARG;;
 esac
done

echo "iteration nbr;datation;timestamp (ns);used (b);available (b);use (%);mount point"

s'il n'y a pas de processus a detecter, on commence directement
started=0
stopped=0
if [-z "$proc"] ; then
 started=1
fi

regex="(.*)\s+([0-9]+)\s+([0-9]+)\s+([0-9]+)\s+([0-9]+%)\s+(.*)"

iteration=0
while [$stopped -eq 0] ; do

 # detection du processus
 if [-n "$proc"] ; then
 pid=`ps -A | grep $proc | awk '{print $1}'`

 # detection du debut
 if [$started -eq 0] ; then
 if [-n "$pid"] ; then
 started=1
 START_DATE=$(date +%s%N)
 fi

 # detection de la fin
 else
 if [-z "$pid"] ; then
 stopped=1
 fi
 fi
 fi

 # execution de la commande 'df'
 if [$started -eq 1] ; then
 text=$(df -k $path | tail -n 1)
 [["$text" =~ $regex]]
 if [[$? -eq 0]] ; then
 disk_used=${BASH_REMATCH[3]}
 disk_free=${BASH_REMATCH[4]}
 disk_perc=${BASH_REMATCH[5]}
 disk_mount=${BASH_REMATCH[6]}

 datation=$(date +"%Y/%m/%d %H:%M:%S.%N")
 duration=$(($(date +%s%N) - $START_DATE))
 echo "$iteration;$datation;$duration;$disk_used;$disk_free;$disk_perc;$disk_mount"
 fi

 ((iteration++))
 fi

 sleep $delay
done

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

