

Forum Programmation.shell Extraction de données avec AWK

Posté par albahtaar le 31 octobre 2013 à 03:28.
Licence CC By‑SA.

Étiquettes :

	brian_kernighan

Bonsoir tout le monde,

Intéressé par un récent billet de blog sur B. Kernighan , j'essaie de scripter avec AWK une extraction de coordonnées cartésiennes de certains atomes dans un output de dynamique moléculaire.

Ce dernier est composée d'une ligne de titre, d'un header général, et d'un certain nombre de configurations (snapshots) du systeme pris a intervalles de temps réguliers (dénotés par un timestep). Plus précisément, chaque snapshot comporte 4 lignes de header (1 + 3 lignes pour les vecteurs de la cellule spatiale unitaire), et pour chaque atome : 1 ligne de header (élement, index, …) + 1, 2 ou 3 lignes comportant les positions/vitesse/forces.

Mon objectif est, pour l'instant de reconstruire un fichier de ce format, en ne gardant qu'une certaine molécule (dont je donne l'index du 1er atome, et le nombre d'atomes).

EDIT: finalement, le cœur de mon problème (voir 2e code) réside dans le fait que j'ai encore du mal a saisir comment et quand les conditions des actions sont vérifiées : je cherche a les "remettre sur le tapis" en changeant la valeur d'une variable dans la condition, en quelque sorte, émuler une (deux) boucle.

J'ai commencé naïvement par des boucles et des getline, le plus embetant ayant été de faire passer des arguments (par le biai d'un surcouche bash):

extractHIS.sh:

#!/bin/bash
/home/francois/Sources/SCRIPTS/extractor.awk -v FirstAtomIndex=$1 NbAtomInMol=$2 HISTORY > redHISTORY

extractor.awk:

#! /bin/awk -f

 #Compatible with DL_POLY4 HISTORY files
 BEGIN{}

 {
 print "Extraction of ", NbAtomInMol, "atoms, starting from index #", FirstAtomIndex;
 #TODO check for external parameters assignation

 #Read the file specs and recreate it
 getline;
 CoordsWidth=$1+1;
 NbAtomsInCell=$3;
 NbStep=$4;
 LastRecord=$5;
 NewLastRecord=6+NbStep*(CoordsWidth*NewNbAtomsInCell+4);
 print $1, $2, NbAtomInMol, $4, NewLastRecord;

 #loop over every timesteps
 for (i=1;i<=NbStep;i=i++) {

 getline;
 print $1, $2, NbAtomInMol, $4, $5, $6, $7;
 for (j=0;j<3;j++) {
 #cell specs
 #loop over the number of cell vectors
 getline;
 print $0;
 }

 for (j=1;j<=NbAtomsInCell;j++) {
 getline;
 if(j>=FirstAtomIndex && j<=(FirstAtomIndex+NbAtomInMol-1+CoordsWidth)) {
 print $1,(j-FirstAtomIndex+1),$3,$4,$5;
 for (k=0;k<CoordsWidth;k++) { getline; print $0; }
 }
 else {
 for (k=0;k<CoordsWidth;k++) { getline; }
 }
 }
 }

 }

 END{}

2 Problemes:

* j'ai besoin de pouvoir echantillonner les timesteps, la prise en charge d'un nouvel argument d'intervalle est ajouté dans le script bash, mais les boucles utilisées sont mal adaptées

* les perfs sont sympas mais pas top. je mets ca sur le compte du fait que le fichier est parcouru avec des getlines

Puisque les numéros des lignes intéressantes peuvent être déduits du nombre d'atomes/de timesteps/… exploiter les NR me semble etre la meilleure solution.

J'ai donc réecrit le script comme suit :

#! /bin/awk -f

 #Compatible with DL_POLY4 HISTORY files
 BEGIN{
 print "Extraction of ", NbAtomInMol, "atoms, starting from index #", FirstAtomIndex; i1=0; i2=1;
 }

 NR == 2 {
 CoordsWidth=$1+1;
 NbAtomsInCell=$3;
 NbStep=$4;
 LastRecord=$5;
 NewLastRecord=2+NbStep*(CoordsWidth*NbAtomsInMol+4);
 print $1, $2, NbAtomInMol, $4, NewLastRecord;
 getline;
 }

 #TODO check for external parameters assignation

 #Read the file specs and recreate it

 #timesteps

 #{
 #for (i=1;i<=NbStep;i=i+Intrvl) {
 # if (NR==(2 + (i-1) * (4+NbAtomsInCell*(CoordsWidth+1)) +1)) { print $1, $2, NbAtomInMol, $4, $5, $6, $7; }
 # if (NR==(2 + (i-1) * (4+NbAtomsInCell*(CoordsWidth+1)) + (4 + (FirstAtomIndex-1)*(CoordsWidth+1)) +1)) {
 # for (j=1;j<=NbAtomInMol;j++) {
 # print $1,j,$3,$4,$5;
 # for (k=0;k<=CoordsWidth-1;k++) { getline; print $0; }
 # getline;
 # }
 # }
 #}
 #
 #}

 NR == (2 + (i2-1) * (4+NbAtomsInCell*(CoordsWidth+1)) +1) { print $1, $2, NbAtomInMol, $4, $5, $6, $7; i1++; }

 NR == (2 + (i1-1) * (4+NbAtomsInCell*(CoordsWidth+1)) + (4 + (FirstAtomIndex-1)*(CoordsWidth+1)) +1) {
 for (j=1;j<=NbAtomInMol;j++) {
 print $1,j,$3,$4,$5;
 for (k=0;k<=CoordsWidth-1;k++) { getline; print $0; }
 getline;
 }
 i2++;
 print $1, $2, NbAtomInMol, $4, $5, $6, $7;
 }

 END{}

La partie commentée est fonctionnelle, mais très (très) lente! J'ai donc essayé de me servir des actions/patterns: cela s'avere beaucoup plus rapide, mais je ne parvient pas a transcrire a la fois les coordonnées des atomes, et les headers de chaque timesteps. Ici mon dernier essai d'incrémenter les indices i1 et i2 de façon croisée, pour essayer de forcer AWK a reconsidérer les pattern/actions mis a jour avec les nouvelles valeurs de variable (un seul index i partagé, ou deux croisés) mais ça a l'air d’être un peu hors de la philosophie AWK. Est-ce que quelqu'un aurait un conseil pour me remettre sur les rails?

Merci.

EDIT:

Bon, j'ai combiné un petit truc a base de modulos pour les boucles implicites, qui fait tout bien comme il faut.

Le script bash pour l'appel:

#!/bin/bash
./HISsampext.awk -v FirstAtomIndex=$1 -v NbAtomsInMol=$2 -v Intrvl=$3 HISTORY > redHISTORY
#TODO check that div done in header for Nb final records/Nb final steps corresponds to the modulo trick result in sampler

Le script AWK:

 #! /bin/awk -f

#Compatible with DL_POLY4 HISTORY files
BEGIN{
print "Extraction of ", NbAtomsInMol, "atoms, starting from index #", FirstAtomIndex, "with interval timestep of ", Intrvl;
RS="\n";
a=1;
}

NR == 2 {
CoordsWidth=$1+1;
NbAtomsInCell=$3;
NbStep=$4;
LastRecord=$5;
NewLastRecord=2+NbStep*(CoordsWidth*NbAtomsInMol+4);
print $1, $2, NbAtomsInMol, $4, NewLastRecord;
a=(4 + NbAtomsInCell * (CoordsWidth+1))*Intrvl;
b=1+(4 + (FirstAtomIndex-1) * (CoordsWidth+1));
#c=NbAtomsInMol * (CoordsWidth+1);
#print a,b;
}

((NR-2) % a == 1) {
print $1, $2, NbAtomsInMol, $4, $5, $6, $7;
for (k=1;k<=3;k++) { getline; print $0; }
}

((NR-2) % a == b) {
if(NR>2) {
 for (j=1;j<=NbAtomsInMol;j++) {
 print $1,j,$3,$4,$5;
 for (k=0;k<=CoordsWidth-1;k++) { getline; print $0; }
 getline;
 }
 }
}

END{}

Ca marche pas trop mal, et je suis assez content de ma gueule d'avoir pensé (et réussi a faire marcher) le coup des modulo ^

Par contre, ca pourrait marcher un peu plus vite… il y a eu quelques idées/conseils dans les commentaires que je vais essayer de creuser.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

