

Forum Programmation.autre Haskell : simplifier 2 "case" imbriqués

Posté par max22 le 12 mai 2016 à 11:49.
Licence CC By‑SA.

Étiquettes :

	haskell

Bonjour,

je viens de coder un petit truc vite fait en Haskell pour remplir des noms de ville à partir de codes postaux dans un fichier CSV. Ca marche, mais j'aimerais simplifier ma fonction "main" qui contient 2 "case" imbriqués, à cause de la fonction parseCSVFromFile qui a pour type :

parseCSVFromFile :: FilePath -> IO (Either ParseError CSV)

Je fais donc la gestion d'erreur à la main, mais vu que Either est une monade, j'aimerais que ça soit fait automatiquement. Et le fait que le Either soit encapsulé dans un IO complique un peu les choses. J'ai essayé d'utiliser liftM, mais je n'ai pas réussi.

Voici le code en question :

module Main (
 main
) where

import Text.CSV
import qualified Data.Map as Map

fromCSV :: CSV -> Map.Map String String
fromCSV = Map.fromList . map (\l -> (l!!2, l!!1)) . init . tail

fillCity :: Map.Map String String -> Record -> Record
fillCity _ l | length l /= 13 = l
fillCity m l = [cp] ++ [Map.findWithDefault "" cp m] ++ drop 2 l
 where cp = head l

f :: CSV -> CSV -> String
f cps = printCSV . map (fillCity $ fromCSV cps)

main :: IO ()
main = do
 r <- parseCSVFromFile "laposte_hexasmal.csv"
 case r of
 Left err -> error (show err)
 Right cps -> do
 r2 <- parseCSVFromFile "listing.csv"
 case r2 of
 Left err -> error (show err)
 Right listing -> putStrLn . f cps $ listing

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

