

Forum Programmation.autre inférence de type en Haskell

Posté par PyroTokyo le 30 juillet 2014 à 08:12.
Licence CC By‑SA.

Étiquettes :
aucune

Bonjour à tous

Aujourd'hui je faisais un petit peu de Haskell, histoire de découvrir quelque chose de nouveau, et je me frottais un peu aux histoires d'évaluation explicite avec les listes.

Histoire de commencer petit, je voulais faire une petite fonction qui ne me sorte pas de out of memory pour faire une somme toute bête.

Donc dans mon interpréteur GhCI (Haskell Platform) je fais:

import list.Data
let sum' liste = foldl' (+) 0 liste
:t sum'
sum' :: Num b => [b] -> b

Jusque là tout va bien. Ça marche avec des listes d'entiers, de réels, etc… comme prévu.

Après, je me dis "tiens on va condenser un peu"

let sum' = foldl' (+) 0
:t sum'
sum' :: [Integer] -> Integer

Gni ??? Bon, on teste avec l'expression sans let…

:t foldl' (+) 0
foldl' (+) 0 :: Num b => [b] -> b

Re-gni ??? Bon, et avec un lambda ?

let sum' = \x -> foldl' (+) 0 x
:t sum'
sum' :: [Integer] -> Integer

Comprends plus… Quelqu'un pourrait-il me dire pourquoi à un moment donné je perds la généricité ?

En général je donne le moins d'information possible sur le type, donc je ne comprends pas d'où vient cette spécialisation soudaine…

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

