

Forum Programmation.autre les sémaphores nommés

Posté par nas le 23 février 2006 à 20:25.

Étiquettes :
aucune

je voudrais savoir si c'est possible d'utiliser des sémaphores nommés sur linux (suse 8.1).

lorsque je tape sur le terminal : man sem_open j'ai ceci en résultat :

linux:/ # man sem_open

Aucune entrée de manuel pour sem_open

le programme ci-dessous tourne bien sur Tru64 UNIX V5.0A mais sur linux (suse 8.1) la compilation se passe bien mais à l'éxecution j'ai comme erreur le message suivant :

Erreur de segmentation !

je compile avec la ligne suivante : gcc -v -g -lrt shmsem.c

la bibliothèque semaphore.h existe bien dans le dossier /usr/include/

voici le programme:

/*shmsem.c*/

#include <stdio.h>

#include <ctype.h>

#include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

#include <semaphore.h>

#include <sys/stat.h>

#define gotoxy(x,y)printf("\033[%d;%dH",y,x);

caddr_t pg_addr,pg_addr2;

sem_t *mysemp;

sem_t *mycpt;

int fd,fd2;

typedef struct p{

	char nom[20];

	char prenom[20];

	int age;

}FICHE;

void Menu(void);

void Ecrire(void);

void shmsem(void);

void Lire(void);

void Quitter(void);

void Menu(void)

{

 gotoxy(30,1);

 printf("***** M E N U *****\n");

 gotoxy(20,3);

 printf("Tapez (1) Ecrire:?\n");

 gotoxy(20,5);

 printf("Tapez (2) Lire:?\n");

 gotoxy(20,7);

 printf("Tapez (3) Quitter:?\n");

 gotoxy(20,9);

 printf("Votre choix : ");

}

/*

prendre le sémaphore encoder puis libérer le sémaphore.

pendant que le processus écrit les autres sont bloqués

*/

void shmsem(void)

{

 int size = 5*sizeof(FICHE);

 int size2 =sizeof(int);

	/*

	int semid, nsems, semflg, CLE;

	key_t key;

 /*création de la première mémoire partagée*/

 /**/

 fd = shm_open("example", O_RDWR|O_CREAT,S_IRWXO|S_IRWXG|S_IRWXU);

 if (fd < 0)

 {

 	perror("open error ");

 exit(0);

 }

 if ((ftruncate(fd, size)) == -1)

 {

 	perror("ftruncate failure");

 exit(0);

 }

	/*Allocation de la mémoire partagée*/

 pg_addr = (caddr_t) mmap(0, size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED,fd, 0);

 if (pg_addr == (caddr_t) -1)

 {

 	perror("mmap failure");

 exit(0);

 }

 /**/

 /*création de la deuxième mémoire partagée*/

 fd2 = shm_open("example2", O_RDWR|O_CREAT,S_IRWXO|S_IRWXG|S_IRWXU);

 if (fd2 < 0)

 {

 	perror("open error");

 exit(0);

 }

 if ((ftruncate(fd2, size2)) == -1)

 {

 	perror("ftruncate failure");

 exit(0);

 }

	/*Allocation de la mémoire partagée*/

 pg_addr2 = (caddr_t) mmap(0, size2, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED,fd2, 0);

 if (pg_addr2 == (caddr_t) -1)

 {

 	perror("mmap failure");

 exit(0);

 }

 /*le sémaphore initial*/

	

 mysemp = sem_open("mysemp", O_CREAT | O_RDWR, 0644, 1);

 if (mysemp == (void *)-1)

 {

 	perror("sem_open() failed ");

 }

 /*le sémaphore compteur*/

 mycpt = sem_open("mycpt", O_CREAT | O_RDWR, 0644, 0);

 if (mycpt == (void *)-1)

 {

 	perror("sem_open() failed ");

 }

 sem_post(mycpt);/*incrémentation du sémaphore compteur*/

}

void Ecrire(void)

{

	FICHE nouveau;

	int a,val;

	char n[20], p[20];

	/* ATTENTE DU SEMA : SEM_WAIT */	

	printf ("En attente.....\n");

	sem_wait(mysemp);

	fflush(stdout);

	fflush(stdin);

	printf ("ECRITURE\n");

	fflush(stdin);

	printf("Nom:");

	scanf("%s",&n);

	fflush(stdin);

	printf("Prenom:");

	scanf("%s",&p);

	printf("Age:");

	scanf("%d",&a);

	

	strcpy(nouveau.nom, n);

	strcpy(nouveau.prenom, p);

	nouveau.age=a;

	val=*pg_addr2;

	memcpy(pg_addr+(val*sizeof(FICHE)), &nouveau, sizeof(FICHE));

	if(val==5)

	{

		val=0;

		*pg_addr2=val;

	}

	else

	{

		val++;

		*pg_addr2=val;

	}

	/* LIBERATION DU SEMA : SEM_POST */

	sem_post(mysemp);

}

/*

prendre le sémaphore, lire, afficher et libérer le sémaphore.

pendant que le processus lit les autres sont bloqués

*/

void Lire(void)

{

	FICHE pers;

	int i;

	printf ("LECTURE\n");

 /* ATTENTE DU SEMA : SEM_WAIT */

 printf ("En attente......\n");

 sem_wait(mysemp);

 	for(i=0;i<5;i++)

 	{

 	memcpy(&pers, pg_addr+(i*sizeof(FICHE)), sizeof(FICHE));

 	printf ("Nom : %s\t Prenom : %s\t Age : %d\n",pers.nom,pers.prenom,pers.age);

 }

 /* LIBERATION DU SEMA : SEM_POST */

 sem_post(mysemp);

 fflush(stdin);

 getchar();

}

/*

le dernier processus qui reste doit détruire toutes les ressources :

mémoire partagée et sémaphore.

*/

void Quitter(void)

{

	int val;

	sem_wait(mycpt);

	sem_getvalue(mycpt,&val);

	if(val==0)

	{

 sem_unlink ("mysemp");

 sem_unlink("mycpt");

 shm_unlink("example");

 shm_unlink("example2");

 sem_close(mysemp);

		sem_close(mycpt);

 close(fd);

 close(fd2);

	}

}

int main(void)

{

	char car;

	shmsem();

 do

 {

 printf("\033[2J");

 Menu();

 /* ignore tous les caracteres non alphanumeriques */

 while(!isalnum(car=getchar()));

 switch (car)

 {

 case '1': Ecrire();

 	 break;

 case '2': Lire();

 	 break;

 case '3': Quitter();

 break;

 default: fprintf(stderr,"%c: commande inconnue !\n",car);

 }

 }while (car != '3');

getchar();

return 0;

}

Apparemment le problème est dû aux sémaphores nommés, donc ma question est de savoir comment pourrais-je procéder à la réecriture du programme pour linux merci pour votre aide !!!

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

