

Forum Programmation.autre Rust : lapin compris les durées de vie

Posté par Élafru le 29 juin 2021 à 16:28.
Licence CC By‑SA.

Étiquettes :

	rust

	programmation

Bonjours mesdames messieurs,

J'essaye de me rafraîchir la mémoire sur le langage Rust, que je n'ai pas pratiqué depuis 1 ou 2 ans. Pour cela je lis «The Rust Programming Language», document officiel qui décrit ses caractéristiques.

Arrivé au chapitre 10.3 sur les durées de vie, je me retrouve face à une question sans réponse.

On nous présente ce bout de code :

 fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
 }

On nous explique qu'on est obligé de spécifier la durée de vie «'a» sur les deux entrées et sur la sortie de la fonction. L'explication, c'est que le compilateur ne sait pas si c'est une référence vers x ou y qui va sortir, donc il ne sait pas quelle durée de vie vérifier. Je comprends bien cette contrainte, en effet l'emprunt du if ou du else sera décidé à l'exécution.

Ce que je ne comprends pas, c'est pourquoi, dans ce cas là, le compilateur ne liste pas toutes les possibilités, puis s'appuie sur la durée de vie la plus limitée ? Pour reprendre l'exemple plus haut, pourquoi le compilateur ne peut-il pas suivre cet algorithme :

	Lister toutes les références qui peuvent atterrir en sortie (ici donc, x et y)

	Estimer la durée de vie de chacune

	Choisir la plus mauvaise, comme ça on évite les erreurs de référence nulle

Pourquoi est-ce qu'on doit utiliser cette syntaxe «'a» pour lui dire de le faire ? Ne peut-il pas le faire sans qu'on lui demande ?

Merci d'avance !

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

