

À la Croisée des Chemins: crossroad, environnement de cross-compilation

Posté par Jehan (site web personnel, Mastodon) le 18 octobre 2013 à 14:57.
Édité par ZeroHeure, Benoît Sibaud, patrick_g, palm123 et Ontologia.
Modéré par rootix.
Licence CC By‑SA.

Étiquettes :

	crosscompilation

	blues

	compilation_croisée

[image: Ligne de commande]

Cross-compiler pour Windows sur une machine Linux est maintenant aussi simple que compiler pour Linux avec le fameux triptyque ./configure && make && make install. Crossroad fait référence à la fameuse chanson "Cross Road Blues" de Robert Johnson, une des références du blues que je joue régulièrement moi-même. La chanson raconterait comment Robert Johnson aurait rencontré le diable à un croisement de route. La légende populaire veut qu'il aurait alors vendu son âme au diable en échange de son extraordinaire don pour la musique. Je trouvais que c'était le nom parfait pour mon outil, me permettant de cross-compiler pour des environnements propriétaires. :-)

NdM : le film libre Crossroads la route du blues vous en dira plus sur le génial Robert Johnson.

Sommaire

	Une histoire de Gimp

	Fonctionnement

	Installation

	
Fonctionnalités
	Gestion de paquetages

	Support de divers systèmes de compilation et shells

	
En quoi consiste cross-compiler? Et comment crossroad fonctionne?
	Chaîne de compilation

	Les dépendances

	L'environnement

	Et après?

	Conclure sur un hors-sujet: le troll du copyright

Une histoire de Gimp

Utilisateur Linux depuis pas mal d'années, je n'utilise jamais Windows. Néanmoins je n'ignore pas pour autant l'existence de ce système d'exploitation alternatif; et bien que Linux soit ma plateforme cible, je ne refuse pas non plus de débugguer pour Windows.

Pour GIMP par exemple, nous n'avons presque aucun développeur Windows, un appel fut même rédigé sur gimp.org il y a plus d'un an, avec un succès très mitigé; et le résultat est que GIMP est beaucoup plus lent et buggué sous Windows que sous Linux.

Or j'ai une licence Windows 7 inutilisée depuis l'achat de mon ordinateur portable, et le contrat d'utilisation m'autorise à le lancer dans une machine virtuelle. Il m'est donc arrivé à plusieurs reprises de corriger des bugs pour Windows, puis à tester dans ma VM. Même si de plus en plus de personnes arrivent à se faire rembourser Windows sur leur machine, je sais que vous êtes nombreux, qui — comme moi — gardez votre licence Windows. Autant en faire bon usage, non ?

Mais voilà, développer sous Linux — avec un éditeur efficace ! — pour Windows est une chose; compiler pour Windows en est une autre.

J'avais d'abord essayé de compiler sous Windows avec l'environnement MSYS/MinGW. Ce fut la croix et la bannière; et même lorsqu'on y parvient, la compilation est effroyablement lente.

J'ai alors cherché comment cross-compiler sous GNU/Linux pour Windows. "Cross-compilation", un terme souvent entendu, mais dont l'application a toujours été un mystère. La théorie est en effet simple (générer des binaires pour une autre architecture matérielle et/ou un autre système d'exploitation), la pratique par contre se retrouve dans une foultitude de tutoriels sur le net, tous plus confus et aléatoires les uns que les autres. J'ai néanmoins fini par décortiquer les "pourquoi" des "comment"; mais comme mettre en place un environnement de cross-compilation reste vraiment rébarbatif, j'ai écrit la procédure sur le wiki des développeurs GIMP, autant pour les autres que pour moi, ce qui est ensuite devenu un script bash simple sur ma machine, spécifique au projet GIMP, que j'ai progressivement amélioré, jusqu'à ce qu'il devienne un outil d'automatisation beaucoup plus générique: crossroad.

Fonctionnement

Crossroad est un petit logiciel en ligne de commande. Il marche très bien pour moi, mais je le considère en beta, du simple fait qu'il n'a servi qu'à moi jusqu'alors. Je le diffuse officiellement ce jour pour en faire profiter les autres.

Le principe est très simple: il permet de rentrer dans un "environnement" de cross-compilation, par exemple pour Windows 64-bit:

$ crossroad w64

Dans cet environnement, un gestionnaire de paquetages est disponible. Par exemple, si je souhaite compiler le dépot git de GIMP, je dois d'abord installer gtk2, iconv, et diverses autres dépendances:

$ crossroad install gtk2-devel win_iconv-devel babl-devel gegl-devel libjpeg-devel

Puis je me rends dans mon dépôt local de GIMP stable 2.8, et au lieu de lancer le ./configure habituel, je lance:

$ crossroad configure --without-libtiff --disable-python

Note: je pourrais aisément installer plus de dépendances, mais je souhaitais un exemple avec des options sur mon configure, afin de montrer que cela marche exactement comme un configure normal (il ne s'agit en fait que d'un wrapper du ./configure du répertoire courant, qui ajoute les options de cross-compilation adéquates d'un projet autotools).

Enfin un habituel:

$ make && make install

Finalement je sors (exit) de mon environnement crossroad, et me rends dans un dossier partagé avec ma VM Virtualbox faisant tourner Windows. Je tape:

$ crossroad --symlink w64 gimp

Cela créera un répertoire gimp/ que je verrai depuis Windows, depuis lequel je pourrai lancer GIMP.

Si je souhaite plutôt partager une archive zip avec des Windowsiens (support zip uniquement dans cette première version, car c'est l'un des formats les plus répandus sur cette plateforme), je peux simplement taper:

$ crossroad --compress gimp.zip w64

J'ai fait cette procédure avec succès, il y a quelques jours par exemple, afin qu'un utilisateur de GIMP sous Windows puisse tester mon patch. C'est extrêmement pratique et je n'ai plus besoin de mémoriser ou copier-coller des commandes et termes compliqués ni de demander à des utilisateurs non-développeurs qui reportent un bug d'appliquer un patch et de compiler (ce que je n'ai jamais demandé, ce serait absurde).

Crossroad marche d'ailleurs aussi très bien avec un projet cmake. Au lieu de lancer cmake, je lance:

$ crossroad cmake .

J'ai ainsi chronométré par exemple, lorsque j'ai un patch à tester sur le git master de GIMP (qui implique la compilation de 4 projets, et l'installation de nombreuses dépendances pré-compilées), je mets seulement 15 minutes en partant de rien pour avoir un zip à fournir à des testeurs ou tester moi-même dans ma VM!

Installation

Vous pouvez cloner mon code:

git clone git://git.tuxfamily.org/gitroot/crossroad/crossroad.git

Je l'ai aussi mis sur pypi, donc vous pouvez y télécharger un paquetage prêt-à-l'installation, ou simplement:

pip3 install crossroad

Note: crossroad dépend de python >= 3.3. Il y a aussi une dépendance à 7z. Il vous faudra aussi installer MinGW-w64. Je pense que ces trois dépendances sont disponibles dans toutes les distributions modernes. crossroad vous dira si d'autres paquetages manquent.

Fonctionnalités

Gestion de paquetages

Je ne vais pas détailler tous les cas d'usage, mais l'un des points majeurs est que crossroad intègre un système de gestion (simple) de paquetages pré-compilés pour Windows 32 et 64 bit. En particulier, vous pouvez installer et désinstaller des paquets, obtenir des informations (description, version, etc.) et lister les fichiers fournis par un paquet.

Les fonctionnalités manquantes de la gestion des paquetages sont surtout que le système ne garde pas trace de ce qui est installé ou non, et vous ne pouvez pas encore chercher un paquetage par mot clé ou fichier.

Ce système de gestion repose sur le projet MinGW de Fedora, la seule distribution connue qui fournit un dépôt spécial de paquets RPM pré-compilés pour Windows. Il existe aussi d'autres projets plus génériques comme Win-builds. Je ne serais pas contre aussi supporter ce dépôt en parallèle ou en alternatif si quiconque veut me fournir un patch (pour l'instant les paquets Fedora me conviennent, mais je suis pour élargir le champs des possibles!).

Support de divers systèmes de compilation et shells

Aussi crossroad ne gère que les projets autotools et cmake pour le moment, et fonctionne avec un shell bash uniquement (zsh bientôt de la partie cependant).

Pour plus de détails, le manuel inclus (man crossroad) se veut aussi exhaustif que possible pour décrire l'ensemble des possibilités et du fonctionnement de l'outil.

En quoi consiste cross-compiler? Et comment crossroad fonctionne?

Quand vous compilez en natif, il y a plusieurs choses à prendre en compte:

Chaîne de compilation

Ce qui change d'un ordinateur à l'autre peut être:

	Le matériel: en particulier le processeur qui a des instructions différentes à chaque marque et modèle. Si maintenant la plupart des OS majeurs d'ordinateurs se reposent sur du x86 (beaucoup plus de plateformes matérielles dans l'embarqué cela dit), on fera au moins la distinction entre 32 et 64-bit.

	le système d'exploitation: ce dernier influe sur le format de l'exécutable tout d'abord, une éventuelle extension de fichier, mais aussi sur les bibliothèques de fonctions natives accessibles pour votre programme.

Pour les bibliothèques, c'est à vous de rendre votre code portable, soit en utilisant des appels portables de plus haut niveau, soit avec du code optionel (#ifdef, ou fichiers alternatifs suivant l'OS, par exemple). Pour tout le reste, c'est à votre chaîne de compilation de s'en occuper.

Pour cela, nous avons besoin de dire au système de compilation quelle est notre chaîne de compilation (compilateur, linker, et autres outils). Sous Linux, il s'agit en général d'outils dont les binaires sont nommés comme l'outil natif, mais avec en préfixe la plateforme cible.

Par exemple le compilateur C pour Windows 64-bit du projet MinGW-w64 est nommé: x86_64-w64-mingw32-gcc.

Le linker est: x86_64-w64-mingw32-ldd. Et ainsi de suite.

Pour les projets autotools, cela se détermine simplement par l'option --host du script configure, pour donner le préfixe adéquat (permettant de chercher les outils ciblant cette plateforme dans votre $PATH):

./configure --host=x86_64-w64-mingw32

Bien que --build ne devrait pas être nécessaire, il est conseillé de l'ajouter pour les machines récentes, comme souvent pour des raisons principalement de compatibilité descendante.

Bien entendu, vous devez aussi utiliser un --prefix, sauf si vous souhaitez mélanger des binaires Windows dans votre système et le voir exploser.

Crossroad s'occupe donc d'ajouter ces options à votre place.

Les dépendances

Des petits projets peuvent avoir très peu de dépendances. Mais des projets énormes, comme GIMP, en auront beaucoup (des dizaines, si on considère les dépendances de dépendances!).

Au tout début, j'étais désespéré quand je pensais que je serais obligé de cross-compiler à la main l'ensemble de ces projets. Cela me paraissait une tâche sans fin. Puis j'ai trouvé un script qui téléchargeait et décompressait des RPMs Fedora, et je me suis basé dessus en lui ajoutant de nouvelles fonctionnalités et en rendant son utilisation plus aisée. Cela rend soudainement le processus complet bien plus tolérable.

L'environnement

Avec les deux points précédents, on utilise les bons outils, et on a des dépendances prêtes. Il faut maintenant lier le tout. En effet, par défaut, votre système cherchera dans vos bibliothèques natives, ce qui ne fonctionnera bien évidemment pas.

Les projets autotools utilisent principalement des variables d'environnement qui indiquent où trouver les bibliothèques binaires et les en-têtes, notamment avec pkg-config, $CFLAGS, $CPATH, $LDFLAGS, etc.

CMake utilise surtout un fichier séparé pour configurer sa chaîne de compilation.

Ainsi crossroad prépare pour vous ces divers fichiers et variables.

En conclusion son principe est donc de simplifier ce triple processus, vous évitant des copier-coller rébarbatifs et prônes à l'erreur, en:

	préparant l'environnement;

	gérant les dépendances;

	indiquant au système de compilation où trouver ces dépendances.

Et après?

Pour l'instant crossroad ne gère que Windows par le biais du projet MinGW-w64 (à ne pas confondre avec MinGW dont MinGW-w64 est un fork).

Si quelqu'un veut rajouter des scripts pour d'autres plateforme cibles (Android, IPhone, OSX, divers BSD, ou n'importe quel plateforme, même exotique), je serai très intéressé par vos patchs. J'ai rendu crossroad très générique, de sorte que gérer de nouvelles plateformes devrait être simple. Bien sûr, il y a probablement d'autres améliorations ou corrections à faire. J'espère donc que des gens seront intéressés, l'utiliseront et me feront des retours.

Conclure sur un hors-sujet: le troll du copyright

Plusieurs trolls techniques se sont glissés plus haut. Mais je vais conclure sur un troll juridique, avec une petite note sur l'œuvre complète de Robert Johnson, enregistrée entre 1936 et 1937. L'auteur et unique interprète est mort en 1938. D'après les règles du copyright telle qu'on les connaît (ou qu'on croit les connaître), l'ensemble de son œuvre devrait donc être dans le domaine public à l'heure actuelle. Pourtant je n'ai pas réussi à trouver de copie complète du morceau pour vous sur archive.org, Wikimedia Commons, ou ailleurs.

Pire d'après certains articles, certaines lois absurdes et un précédent juridique "protègeraient" l'œuvre jusqu'en 2047, du moins aux US. Néanmoins le flou juridique de la loi, jusqu'à ce qu'un éventuel additionel procès vienne éclaircir cela (un autre jugement confirmerait-il le premier), empêche de savoir si cela est vrai. Si un quelconque homme de loi spécialiste du copyright avait un avis sur la question, au moins pour la France, mais aussi pour d'autres pays, je serais heureux d'en savoir plus.

Décidément, crossroad est bien le nom idéal: un véritable enfer pavé de bonnes intentions!

NdM : on se souvient d'une dépêche récente sur l'oeuvre du poète Guillaume Apollinaire, montée dans le domaine public presque 100 ans après la mort de l'auteur

Aller plus loin

	
Dépôt de source de Crossroad sous AGPLv3
(240 clics)

	
Crossroad dans pypi et paquetage
(126 clics)

	
Procédure de cross-compilation "à la main"
(161 clics)

	
extrait de "Cross Road Blues", de Robert Johnson
(71 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections72.png

