

Administration de serveur Unix en DMZ via serveur de rebond

Posté par yannig (site web personnel) le 07 mars 2008 à 13:44.

Modéré par Mouns.

Étiquettes :
aucune

[image: Sécurité]

Dans ce qui va suivre, j'essaierai de vous présenter une technique que j'utilise pour accéder à mes serveurs via des points de montage sshfs (basé sur fuse) encapsulé dans des tunnels SSH.

Dans ce qui va suivre, je ferai des références à un ensemble de produits. Je vais en faire ici une rapide présentation :

	openssh (que je ne présenterai pas)

	fuse : module noyau permettant de manipuler des points de montage en tant qu'utilisateur lambda

	tsocks : bibliothèque permettant l'encapsulation des requêtes réseaux d'un programme.

	afuse : utilitaire permettant de se servir de fuse pour faire des automounts.

Installation

Pour ce qui va suivre, je me baserai sur une installation standard de Kubuntu 7.10 et nous allons notamment avoir besoin des paquets suivants :

	sshfs

	tsocks

	afuse

Si vous choisissez aptitude pour faire votre installation, vous procéderez comme suit :

sudo aptitude install fuse tsocks afuse

L'installation ne posant pas de problème insurmontable, je ne m'étendrai pas plus sur le sujet.

Vous devez en revanche vous assurer que votre utilisateur (dans mon cas yannig) doit bien appartenir au groupe fuse :

yannig@yannig-desktop:~$ id -a

uid=1000(yannig) gid=1000(yannig) groups=4(adm),20(dialout),...106(fuse),108(lpadmin),...1000(yannig)

Si ce n'est pas le cas, vous pouvez rajouter l'utilisateur avec la commande suivante :

yannig@yannig-desktop:~$ sudo usermod -G fuse yannig

Attention de vous déloguer/reloguer si vous êtes dans une session graphique pour prendre en compte ce changement de groupe. Il faudra également relancer votre terminal si vous êtes logué en ssh sur votre machine.

Mise en place

La première étape va consister à mettre en place nos moyens de communication avec le serveur de rebond et entre autre la mise en place de clé d'authentification. Pour se faire, nous allons user des clés d'authentification que nous déposerons dans le répertoire adhoc de l'utilisateur du serveur de rebond :

1/ Génération de la clé :

yannig@yannig-desktop:~$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/home/yannig/.ssh/id_dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/yannig/.ssh/id_dsa.

Your public key has been saved in /home/yannig/.ssh/id_dsa.pub.

The key fingerprint is:

a9:xx:7d:xx:d9:xx:ea:xx:bd:xx:66:xx:98:xx:47:xx yannig@yannig-desktop

2/ Dépôt de la clé sur le serveur de rebond :

yannig@yannig-desktop:~$ cat .ssh/id_dsa.pub | ssh yannig@rebond "cat >> /home/yannig/.ssh/authorized_keys"

The authenticity of host 'rebond (xx.xx.xx.xx)' can't be established.

RSA key fingerprint is 78:xx:ab:xx:d7:xx:26:xx:49:xx:ec:xx:aa:xx:47:xx.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'rebond' (RSA) to the list of known hosts.

yannig@rebond's password:

Nous recopions ici le contenu de la clé publique que nous venons de générer dans la liste des clés autorisées à se connecter sur mon compte sur le serveur de rebond. Ainsi, la prochaine fois que nous chercherons à nous connecter sur la machine de rebond, je n'aurai pas de mot de passe à saisir :

yannig@yannig-desktop:~$ ssh yannig@rebond

Last login: Wed Mar 5 09:21:35 2008 from xx.xx.xx.xx

Authorized uses only. All activity may be monitored and reported.

yannig@rebond#

3/ Création d'un point de montage sshfs

yannig@yannig-desktop:~$ mkdir test

yannig@yannig-desktop:~$ sshfs yannig@rebond:/tmp test

yannig@yannig-desktop:~$ ls test

croxxLa crxxLa getxxxt psxxta

crouxxiLa get_xxp lxxe

croxxiLa gexxxt PPCxx303

Ça à l'air de fonctionner !

Accès à nos serveurs via serveur de rebond

Nous avons maintenant configuré une connexion à notre serveur de rebond et nous pouvons même monter en local le système de fichier via SSH du serveur de rebond. Problème, si nous devons accéder aux serveurs derrière le serveur de rebond, nous sommes obligés de nous reconnecter à chaque fois sur ce dernier pour ensuite lancer la connexion :

yannig@yannig-desktop:~$ ssh -o ConnectTimeout=2 yannig@host-dmz1

ssh: connect to host host-dmz1 port 22: Connection timed out

=> impossible de se connecter directement sur le serveur host-dmz1

yannig@yannig-desktop:~$ ssh yannig@rebond

Last login: Wed Mar 5 09:45:36 2008 from 10.251.100.134

yperre@rebond#ssh yannig@host-dmz1

yannig@host-dmz1's password:

Ce genre de chose entraîne plusieurs inconvénients :

	multiplication du nombre de connexions sur la machine de rebond

	perte de temps et multiplication des opérations pour se connecter à vos machines. Lorsque vous avez un parc de 200 machines à administrer, vous n'avez pas forcément envie de vous reconnecter 50 fois par jour.

L'idée est donc de réutiliser tout le temps la même connexion pour faire transiter vos connexions vers la DMZ. Pour se faire nous allons utiliser les tunnels SSH et notamment, l'attribution des connexions dynamiques (option -D).

Pour se faire, nous allons relancer notre connexion sur le serveur de rebond en y ajoutant l'option '-D 8888' permettant la création d'un port dynamique sur le port 8888 (le port dynamique est en réalité vu comme un serveur socks) :

yannig@yannig-desktop:~$ ssh -D 8888 yannig@rebond

Could not request local forwarding.

Last login: Wed Mar 5 09:48:38 2008 from 10.251.100.134

yannig@rebond#

Remarque, si vous voyez les lignes suivantes :

bind: Address already in use

channel_setup_fwd_listener: cannot listen to port: 8888

2 possibilités s'offrent à vous :

	vous avez déjà une connexion ouverte avec un tunnel

	vous avez un programme en local qui fait appel au port 8888 => Changez en !

Remarque : par la suite, je ne parlerai plus de port dynamique mais de serveur SOCKS.

C'est très bien tout ça mais ssh ne peut pas utiliser de serveur SOCKS pour se connecter sur nos serveurs. Il va donc falloir trouver une autre solution : une bibliothèque 'socksificatrice' (ouf!)

Vous avez le choix entre dante-client et tsocks. Mon choix c'est porté sur tsocks en raison de sa simplicité mais ce qui va suivre est tout à fait utilisable sous dante !

Comme nous l'avons vu plus haut, tsocks (sous *Ubuntu) s'installe simplement via le système de packaging. Par défaut, il vous proposera un fichier de configuration /etc/tsocks.conf. Je vous propose de le modifier de la manière suivante :

yannig@yannig-desktop:~$ cat /etc/tsocks.conf

#

server = 127.0.0.1

Server type defaults to 4 so we need to specify it as 5 for this one

server_type = 5

The port defaults to 1080 but I've stated it here for clarity

server_port = 8888

Il nous reste maintenant à socksifier nos appels ssh et tadam :

yannig@yannig-desktop:~$ LD_PRELOAD=/usr/lib/libtsocks.so ssh yannig@host-dmz1

yannig@host-dmz1's password:

Nous sommes maintenant en mesure d'accéder directement à notre serveur en DMZ depuis notre poste de travail. Essayons maintenant de combiner ceci avec un montage sshfs encapsulé dans un tunnel ssh :

yannig@yannig-desktop:~$ LD_PRELOAD=/usr/lib/libtsocks.so sshfs yannig@host-dmz1:/usr/local/lib test

yannig@yannig-desktop:~$ ls test

libcharset.a libgcc_s.so.1 libpopt.la

libcharset.la libiconv.la libpopt.so

libcharset.so libiconv.so libpopt.so.0

libcharset.so.1 libiconv.so.2 libpopt.so.0.0.0

libcharset.so.1.0.0 libiconv.so.2.4.0 libstdc++.a

libg2c.a libintl.a libstdc++.la

libg2c.la libintl.la libstdc++.so

libg2c.so libintl.so libstdc++.so.6

libg2c.so.0 libintl.so.3 libstdc++.so.6.0.3

libg2c.so.0.0.0 libintl.so.3.4.0 preloadable_libiconv.so

libgcc_s.so libpopt.a

Et hop, on a directement accès en local, de manière transparente, à nos fichiers sur la machine en DMZ. De là, il est tout à fait possible de recopier nos fichiers d'un serveur à un autre en s'appuyant sur ces points de montage.

Vous me direz que c'est déjà pas mal comme situation mais je suis malheureusement au regret de vous annoncer qu'on peut faire encore mieux : l'utilisation d'un automount fuse !

Automount avec fuse

Nous avons vu jusqu'à maintenant les points suivants :

	utilisation d'un serveur de rebond

	échange des clés privés / publiques

	montage d'un système de fichier à l'aide du protocole ssh

	connexion sur un serveur au travers d'un serveur SOCKS / tunnel / port dynamique

	connexion d'un système de fichier par l'utilisation d'un serveur SOCKS.

Nous allons maintenant nous attacher à monter les partitions automatiquement à l'aide de afuse.

Pour se faire, nous allons lancer une commande qui prendra comme paramètre un template de montage fuse sshfs.

Voici la commande en question :

afuse -f -o \

 mount_template="LD_PRELOAD=/usr/lib/libtsocks.so sshfs yannig@%r:/ %m" -o \

 unmount_template="fusermount -u -z %m" ~/sshfs

A remarquer que cette commande bloquera votre terminal. Si vous désirez la lancer en tant que démon, il faudra la précéder de la commande nohup ainsi que '&' pour la lancer en arrière plan.

Autre remarque important, si vous utilisez une distribution récente (*ubuntu, debian, mandriva, etc), votre distribution utilisera certainement un encodage UTF8. Si vous utilisez un vieil Unix / Unix proprio (Solaris 8, AIX 5.x etc), vous aurez surement un encodage de type ISO8859-1. Il vous faudra surement renseigner l'option '-o from_code=ISO8859-1'.

Voyons maintenant le résultat :

yannig@yannig-desktop:~$ cd sshfs/

yannig@yannig-desktop:~/sshfs$ ls

yannig@yannig-desktop:~/sshfs$ cd host-dmz1

yannig@yannig-desktop:~/sshfs/host-dmz1$ ls

bin cdrom etc initrd lib media opt root srv tmp var

boot dev home initrd.img lost+found mnt proc sbin sys usr vmlinuz

yannig@yannig-desktop:~/sshfs/host-dmz1$ cd ..

yannig@yannig-desktop:~/sshfs$ ls

host-dmz1

yannig@yannig-desktop:~/sshfs$ cd recette-dmz1

yannig@yannig-desktop:~/sshfs/recette-dmz1$ ls

1 dead.letter HDS lost+found proc root

11 dev home mnt prod sbin

devices kernel mnt2 doc legal noautoshutdown

bin etc lib opt var usr

LICENSE.txt platform

yannig@yannig-desktop:~/sshfs/recette-dmz1$ cd ..

yannig@yannig-desktop:~/sshfs$ ls

host-dmz1 recette-dmz1

Vous voici maintenant capable de faire des recopies de manière transparente entre 2 machines pouvant se trouver sur 2 DMZ différentes depuis votre poste (ou encore en éditant ceci avec un emacs ou autre kate et vi) et tout ceci de manière complétement transparente tout en facilitant l'accès à vos machines en DMZ.

C'est les gars de la sécurité qui vont être contents !
Aller plus loin

	
Automounting FUSE filesystems (linux.com)
(13 clics)

	
Using MySQL as a filesystem (linux.com)
(6 clics)

	
FUSE (FileSystem in UserspacE)
(8 clics)

	
SSHFS (fuse)
(18 clics)

	
afuse (automount fuse)
(9 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections46.png

