

Analysez vos tests #Python avec pytest‑monitor

Posté par Florent Zara (site web personnel, Mastodon) le 08 avril 2020 à 18:40.
Édité par Ysabeau 🧶, Davy Defaud et palm123.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	python

[image: Python]

Pytest‑monitor est une toute nouvelle extension pour Pytest, le cadriciel de test du langage Python, qui vous permet d’analyser l’utilisation des ressources de la machine exécutant les tests.

[image: Logo Pytest-monitor]

Pour le moment, trois ressources sont surveillées et historisés par cette extension :

	le temps d’exécution ;

	la consommation mémoire ;

	l’utilisation du processeur.

Chaque résultat étant attaché à un environnement d’exécution, il est facile de comparer l’impact du matériel utilisé pour faire tourner vos tests.

Pytest‑monitor est particulièrement utile lors de mises à jour par exemple, qu’elles soient matérielles ou logicielles. Vous pourrez apprécier quel a été l’impact d’une montée de version d’une dépendance externe sur laquelle vous n’avez pas le contrôle, ou encore le changement d’interpréteur ou de la machine faisant tourner les tests.

C’est aussi appréciable en intégration continue de pouvoir voir l’impact des modifications du code sur les tests et d’avoir une idée de l’incidence sur les performances.

Utilisation et mode de fonctionnement

À partir du moment où vous avez au minimum un Python 3.5 et Pytest 4.4, l’installation se fait en une ligne de commande via les classiques canaux :

	
Anaconda : conda install pytest-monitor -c https://conda.anaconda.org/conda-forge ;

	
pip : pip install pytest-monitor.

Ensuite, pytest‑monitor est actif par défaut dès que vous lancez vos (py)tests, pas besoin d’ajouter du code ou des commentaires. L’extension va faire une « photo » des ressources utilisées avant l’exécution des tests puis va se baser sur les routines système pour récupérer les informations et minimiser son propre impact sur les mesures :

	
psutil, pour l’utilisation processeur ;

	
memory_profiler, pour la consommation mémoire.

Certes, la prise des mesures aura un impact sur les performances, mais il reste contenu et négligeable par rapport aux tests eux‑mêmes.

Au premier lancement, une base SQLite est créée dans le répertoire d’exécution. Celle‑ci contient trois tables : une pour stocker la définition de l’environnement (processeur, mémoire disponible, nom de la machine, système d’exploitation, version de Python, etc.), une pour la session (tâche en charge des tests avec horodatage) et la dernière les résultats proprement dits pour chaque mesure (horodatés et reliés à un environnement et à une session). Dans une future version, il sera possible de pousser les résultats directement sur un serveur qui pourra les centraliser. La portée des résultats peut se faire au niveau fonction, module, classe ou encore session. De plus, il est possible d’influer sur la manière dont sont surveillés les tests, principalement avec des marqueurs :

	désactivation locale (via un commentaire) ou globale de la mesure de la performance des tests ;

	paramétrage de certains tests, afin de pouvoir rejouer certaines fonctions avec des jeux de paramètres différents.

Pytest‑monitor est très peu intrusif sur les tests, preuve en cet exemple issu de la documentation. Vous n’avez quasiment rien à ajouter pour obtenir des résultats exploitables :

import pytest
import time

Tests are run and monitored by default: no boilerplate code needed
def test_sleep1():
 time.sleep(1)

Run as a test, but do not monitor:
@pytest.mark.monitor_skip_test
def test_sleep2():
 time.sleep(2)

Support for parametrized tests (monitored by default):
@pytest.mark.parametrize(('range_max', 'other'), [(10, "10"), (100, "100"), (1000, "1000"), (10000, "10000")])
def test_heavy(range_max, other):
 assert len(['a' * i for i in range(range_max)]) == range_max

Contributions

Le code source, sous licence MIT, est disponible sur un dépôt GitHub et son auteur, Jean‑Sébastien Dieu, est ouvert aux contributions externes.

Bons tests !

Aller plus loin

	
Projet pytest‑monitor (dépôt Git)
(125 clics)

	
pytest‑monitor version 1.1.1
(40 clics)

	
Documentation de pytest‑monitor
(68 clics)

	
Pytest (site Web)
(71 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/e0b63ab16c4b796897ac3b05df4cd06bd76e35d86dbf0b5f335fea8d.png

EPUB/imagessections41.png
python

powered

