

Arrêtons de (dé)tester nos applications web

Posté par luifr10 le 25 juillet 2024 à 10:44.
Édité par stanlee974 et Benoît Sibaud.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	ow2

	développement_web

	testing

	accessibilité

	cypress

	playwright

[image: Programmation]

Dans ce billet, nous allons discuter d’un sujet crucial pour les développeurs et les testeurs : la pertinence des tests de bout en bout (ou end-to-end E2E) web.

En effet, lorsqu’il s’agit de tester des applications web, les tests automatisés jouent un rôle vital, car ils peuvent être exécutés à plusieurs reprises sans effort et manuel supplémentaire. Parmi les tests automatisés, les tests bout en bout sont particulièrement importants, car ils simulent des cas d’utilisation réels. Cependant, il existe des pratiques courantes qui limitent la pertinence de ces tests.

Nous allons ici examiner 3 mauvaises pratiques, ou erreurs courantes, qui limitent la pertinence de vos tests de bout en bout.

1. Écrire des tests centrés développement

La première erreur courante que l’on peut citer est de rédiger des tests E2E centrés sur la personne qui développe.

Pour comprendre ce que nous entendons par test E2E centré sur le développement, prenons un exemple.

Imaginons que je souhaite écrire un test pour vérifier que le titre « Welcome to weather App » et le bouton « Get Started » sont bien présents sur la page web suivante :

[image: Application Weather App]

Avec un outil populaire comme Cypress (sous MIT), je peux écrire le test suivant :

[image: Test Développer centric]

Et ça marche ! Mais ce test a, au moins, les 2 limitations suivantes :

	Il est écrit en Typescript : Il n’est donc pas facile à comprendre pour les personnes qui ne développent pas (on entend ici toute personne qui ne comprend pas du code de programmation), et c’est un peu dommage, car il est censé représenter un cas d’utilisation réel.

	Utilisation de testId : les testIds sont des attributs ajoutés par les développeurs pour faciliter la localisation des éléments de la page lors des tests.

Mais lorsqu’on les utilise dans nos tests, nous n’interagissons pas avec notre application comme un utilisateur final. Nos utilisateurs finaux ne connaissent pas les ID de test, ils connaissent les boutons, les liens, les champs de formulaire, ils connaissent tout ce qu’ils peuvent voir et/ou entendre.

Alors, comme bonne pratique, adoptons une approche centrée sur la personne utilisatrice (user-centric), qui consiste à utiliser des éléments connus de la personne utilisatrice finale pour interagir comme elle le ferait avec notre application.

Cet exemple montre le même test écrit avec la solution UUV.

[image: Test User centric]

Le nom et le rôle accessibles sont utilisés pour exprimer le cas d’utilisation dans un langage anglais simple.

2. Oublier l’utilisation du clavier

La seconde erreur courante est de négliger l’usage du clavier lors des tests. Les directives WCAG stipulent que tous les éléments interactifs doivent être accessibles via une interface clavier. Cela profite non seulement aux personnes ayant des handicaps visuels ou moteurs, mais aussi à ceux qui préfèrent utiliser le clavier pour des raisons de productivité.

Pour remplir un formulaire comme celui-ci :

[image: Formulaire à remplir]

Les utilisateurs déplacent naturellement une souris pour naviguer, car c’est l’usage par défaut qui est enseigné pour manipuler un ordinateur. Les développeurs ont donc l’habitude de reproduire ce genre de scénario lors de tests E2E, comme sur cet exemple :

[image: Remplissage du formulaire à la souris]

Pour les plus expérimentés d’entre nous, la navigation au clavier est un excellent moyen d’augmenter la productivité. Ainsi lorsque nous testons nos applications, une bonne pratique est de vérifier l’usage du clavier. Pour cet exemple, il convient donc de vérifier le remplissage du formulaire au clavier. Voici un scénario écrit avec l’outil UUV pour le faire :

[image: Remplissage du formulaire au clavier]

La première partie est identique à la navigation à la souris. Ensuite, nous plaçons le focus sur le coin gauche de l’application. Puis nous déplaçons le focus lorsque nous appuyons sur la touche tabulation et nous vérifions que le focus est sur le lien nommé Weather App's Logo. Nous reproduisons ce mécanisme avant de le soumettre.

3. Ignorer l’accessibilité (#a11y)

Contrairement à ce que l’on pourrait croire, les tests E2E sont un excellent contexte pour effectuer des vérifications d’accessibilité en utilisant des outils comme axe-core (sous MPL2) pour effectuer des contrôles de référence WCAG, ou en utilisant des bibliothèques comme uuv/a11y pour les vérifications RGAA. Il est important de garantir la non-régression de l’accessibilité lorsque l’on met à jour nos interfaces, surtout à une époque où l’intelligence artificielle prend de plus en plus de place.

Voici un exemple de scénarios effectuant des vérifications d’accessibilité :

[image: Vérification d’accessibilité]

En résumé

Commencer ou continuer à :

	Écrire des tests centrés sur l’utilisation

	Tester l’utilisation du clavier

	Effectuer des vérifications d'accessibilité

En adoptant ces pratiques, nous pouvons nous assurer que nos applications web sont robustes, accessibles et prêtes pour une utilisation réelle par tous nos utilisateurs.

Mais au fait, qu’est-ce que UUV ?

[image: Logo UUV]

Pour faire simple, UUV est une solution opensource (MIT) qui facilite l’application des pratiques évoquées et de bien d’autres en matière de tests E2E.

Disponible en tant que dépendance npm, UUV offre des phrases prêtes à l’emploi user-centric pour rédiger les tests E2E. Pour les développeurs, le plugin Jetbrains et l’extension VS Code facilite l’écriture des scénarios. De plus, l’assistant UUV, une application de bureau, permet de générer des scénarios de tests comme ceux pour vérifier la navigation au clavier, les interactions avec les boutons, et bien plus encore.

Vous pouvez tester UUV directement sur vos projets ou à l'aide du Kata UUV E2E et contribuer à son développement sur GitHub.

Merci pour votre lecture, n'hésitez pas à partager votre avis en commentaire !

Aller plus loin

	
UUV
(181 clics)

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/658dda7555dbd09423f7282183af9d92d11c81a2dbeb1a1493bda417.png
Add new town

ara

EPUB/27e16afcaec89c70e2ebd0bafa6fccd72e22f559f5a47bb85390547c.png
Nown s w N e

describe('Homepage®, () => {
it('should be contains title and Get Started button', () => {
cy.visit(*/');

Cypress

cy.getByTestId("app-title’).should('have.text’, ‘Welcome to Weather App');
cy.getByTestId('start-button').should('have.text’, 'Get started');

bl
H

EPUB/47528dc051307a8d0a548274ba7ff43869b08d02d930535a20924153.png

EPUB/097314dcb7141c1ffc72ef98edcb3a573b91a2bb2464f9a800a93133.png
e NGOV s wN e

Feature: Ally

Scenario: Axe Core
When T visit path "https://ede-test-quest.github.io/weather-app/"
Then I should not have any axe-core accessibility issue

work in progress
Scenario: RGAA
When I visit path "https://ele-test-quest.github.io/weather-app/"
Then T should not have any rgaa accessibility issue

Scenario: Partial RGAA
When T visit path "https://e2e-test-quest.github.io/simple-webapp/ally-test.html"
Then I should have the following partial result based on the rgaa reference
“""json
{
"status": “error”,

"criteria™: {

=15

uuv

EPUB/69d628a86ca2491ca7464feb8c3afd26969d55f6bd4523f651148a55.png
» Scenario: Fill new town form with keyboard - short mode
43 6iven I visit path "https://e2e-test-quest.github.io/weather-app/?isStarted=true’|

When I click on button named "Add new town"

And I start a keyboard navigation from the top of the page

And the next keyboard element focused should be a link named "Weather App's Logo"
And the next keyboard element focused should be a Llink named "Home"

And the next keyboard element focused should be a text box named "Town name"
And I type the sentence "Paris"

And the next keyboard element focused should be
And I type the sentence "10"

o

spin button named "Latitude"

And the next keyboard element focused should be
And I type the sentence "123"

°

spin button named "Longitude"

And the next keyboard element focused should be
And I type the sentence "Simple Description”

o

text box named "Description”

And the next keyboard element focused should be a button named "Back to town list"
And the next keyboard element focused should be a button named "Submit new town form"
And I click

Then I should see a list named "Available Towns" and containing
| Dovala |
| Tunis |
| Limoges |

| paris | uuv

EPUB/0fed00bfbfecbc04dfadfcb53b18e1550591fe733109d24b1930118c.png
1» Feature: First test|
»v Scenario: Homepage

uuv

When I visit path "https://e2e-test-quest.github.io/weather-app/"
Then I should see a title named "Welcome to Weather App"

And I should see a button named

"Get started"

EPUB/6f447fea074d62ddfd1635f886c9f26d253083022e8f45f0e0707e69.png
» Scenario: Fill new town form with mouse uUuv

105 Given I visit path "https://e2e-test-quest.github,

‘.iu/neather~app/>isstarted=trueﬂ

When I click on
And I type the
And I type the
And I type the
And I type the

"Description"
And I click on

button named "Add new town"

sentence "Paris" in the text box named "Town name"
sentence "10" in the spin button named "Latitude"
sentence "123" in the spin button named "Longitude"
sentence "Simple Description" in the text box named

button named "Submit new town form"

Then I should see a list named "Available Towns" and containing

| Dovala |
| Tunis

| Limoges |
| paris |

EPUB/d3894cdf3f61cb5166a27e21b680bf896a6b9d0fa3cb820b0d1398df.png
»\Welcome to Weather App

4,/
gl /,ﬁ
e

5 gmm

EPUB/imagessections101.png

