

Boîte à outils pour GitLab CI

Posté par Emeric le 21 janvier 2018 à 19:04.
Édité par Davy Defaud, palm123, ZeroHeure, Xavier Teyssier, Benoît Sibaud et elionne.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	gitlab-ci

	postgresql

	gitlab

[image: Gestion de versions]

Le projet que je vais développer ici est une boîte à outils pour Gitlab CI publié sous licence GNU GPL v3, dont la fonction principale est d’exécuter les tâches GitLab manuellement, individuellement et simplement sur votre station de développement. J’ai commencé son développement début 2017 dans le cadre de ma mission chez ERCOM et, à ce jour, il a atteint un bon stade de maturité. Il est désormais utilisé par deux équipes sur au moins une dizaine de projets.
GitLab (Community Edition) est un logiciel libre, sous licence MIT. Il s’agit d’une forge logicielle équivalente à GitHub et la partie mentionnée, GitLab CI, est une fonctionnalité d’intégration continue équivalente au service Travis CI
[image: logo GitLab]

Sommaire

	
citbx4gitlab : boîte à outils pour GitLab CI
	Le projet

	Cas d’utilisation : tâche de pipeline GitLab standard

	
Exécuter une tâche spécifique localement
	Première solution : utiliser l’outil gitlab-runner

	L'autre solution : la commande ci-toolbox

	
Écrire une tâche ou un module en utilisant la boîte à outils
	Écrire une tâche

	Écriture d’un module

	Liste des fonctions utiles

	
Exemples de tâches
	job-minimal

	job-with-before-after-script

	job-advanced

	job-test-services-mysql

	job-test-services-postgres

citbx4gitlab : boîte à outils pour GitLab CI

Cette boîte à outils apporte principalement :

	fonction de base : exécuter les tâches GitLab manuellement et individuellement sur votre station de développement en dehors d’un exécuteur de tâches GitLab (outil gitlab-runner) sans avoir à valider un enregistrement et pousser une branche sur le serveur GitLab ce qui lancera un pipeline complet ;

	fonction avancée : définir des scripts avancés qui peuvent être exécutés de la même manière sur l’exécuteur GitLab et la station de travail standard.

Le projet

Exemple d’intégration de la boîte à outils dans une arborescence de projet :

├── .gitlab-ci.yml
├── tools
│ └── gitlab-ci
│ ├── 3rdparty
│ │ └── bashopts.sh
│ ├── citbx.properties
│ ├── env-setup
│ │ ├── common.sh
│ │ ├── gentoo.sh
│ │ └── ubuntu.sh
│ ├── modules
│ │ ├── ccache.sh
│ │ ├── dockerimg.sh
│ │ └── example.sh
│ ├── run -> run.sh
│ ├── run.d
│ │ └── job-advanced.sh
│ └── run.sh

Liste des éléments essentiels :

	
.gitlab-ci.yml : définition du pipeline de tâches GitLab ;

	
run.sh: script de lancement de tâche GitLab CI exécuté indirectement via la commande ci-toolbox ;

	
bashopts.sh : dépendance externe nécessaire pour la boîte à outils.

Liste des éléments recommandés :

	
env-setup : dossier contenant les routines d’installation de l’environnement pour faire tourner la boîte à outils ;

	
citbx.properties : propriétés de la boîte à outils propre au projet cible.

Liste des éléments pour une utilisation avancée :

	
run.d : dossier contenant les fonctions spécifiques à certaines tâches ;

	
modules : dossier contenant les modules.

Cas d’utilisation : tâche de pipeline GitLab standard

Le schéma suivant décrit l’exécution d’une tâche standard appelée « J » dans un pipeline Gitlab CI :
[image: Cas d’utilisation global]

Dans ce cas, il serait intéressant d’exécuter une tâche spécifique comme J dans son environnement approprié sur votre poste de travail local, sans avoir à valider un enregistrement (git commit) ni avoir à pousser votre dépôt (git push).

Le but est d’avoir exactement le même environnement de construction sur l’exécuteur de tâche GitLab et votre poste de travail local.

[image: Cas d’utilisation d’une tâche unique]

Exécuter une tâche spécifique localement

Première solution : utiliser l’outil gitlab-runner

Pour utiliser cette solution, vous devrez :

	installer l’outil gitlab-runner sur le poste de travail ;

	et le lancer de la manière suivante : gitlab-runner exec <type d‘exécuteur> <nom de la tâche>.

Vous devrez :

	valider tous les changements locaux dans des enregistrements Git ;

	ajouter des options supplémentaires à gitlab-runner du type --docker-image avec le nom de l’image appropriée.

L'autre solution : la commande ci-toolbox

Cette boîte à outils est capable de le faire :

	démarrer une tâche de type script ou docker avec les paramètres appropriés (image, etc.) ;

	lancer une tâche du pipeline localement sans avoir à valider un enregistrement (git commit).

Fonctions additionnelles pour une utilisation avancée :

	ajouter des paramètres et des actions spécifiques au poste de travail ;

	ajouter la possibilité d’exécuter une invite de commande dans l’environnement Docker approprié ;

	diviser les différentes tâches du pipeline de façon modulaire.

Utilisation :

	
ci-toolbox <commande> [arguments…], depuis n’importe quel endroit dans l’arborescence du projet ;

	ou bien : chemin/du/run.sh <commande> [arguments…].

L’outil ci-toolbox est installé dans le système durant la phase de paramétrage path/to/run.sh setup et ajoute les fonctionnalités suivantes :

	cet outil peut être exécuté n’importe où dans l’arborescence du projet contenant le script run.sh ;

	cet outil est comme un raccourci pour trouver et exécuter le script run.sh sans avoir à spécifier le chemin absolu ou relatif ;

	cet outil permet d’ajouter la prise en charge de l’auto‐complétion Bash sur le nom des tâches du pipeline GitLab et des options associées.

Les limites connues de la boîte à outils : elle n’est applicable uniquement que pour les types d’exécuteur de tâche GitLab docker et shell.

Écrire une tâche ou un module en utilisant la boîte à outils

En plus de pouvoir lancer une tâche du pipeline (comme la tâche job-minimal), vous pouvez utiliser la boîte à outils pour écrire les scripts de celle‐ci avec une structure modulaire, comme c’est le cas pour la tâche d’exemple job-advanced.
[image: Ordre d’exécution des types de routines]

Écrire une tâche

Les routines spécifiques à la tâche en question doivent être écrites dans un script qui porte le nom de cette dernière dans le dossier : run.d/<nom de la tâche>.sh.

Ce job peut faire appel à différents modules utilisant : citbx_use "<nom du module>".

Le job peut définir les routines suivantes — uniquement applicables à un poste de travail local :

	
job_define() : cette fonction peut être utilisée pour définir des options pour le cas d’utilisation sur un poste de travail ;

	
job_setup() : cette fonction peut être utilisée pour effectuer une action avant de configurer et démarrer l’environnement de la tâche (docker run).

La tâche peut définir les routines suivantes - applicables à tous les environnements :

	
job_main() : la fonction principale de la tâche qui contient la charge utile ;

	
job_after() : cette fonction peut être utilisée pour effectuer une action après l’exécution de la fonction job_main et est appelée dans tous les cas (succès ou erreur) ; elle est appelée avec le code de retour du processus comme premier argument (0 en cas de succès).

Exemple de script de tâche : tools/gitlab-ci/run.d/job-advanced.sh.

Écriture d’un module

Le module doit être défini dans modules/<nom de mon module>.sh.

Ce module peut utiliser d’autres modules à l’aide de citbx_use "<mon autre module>".

Le module peut définir les routines suivantes — uniquement applicables à un poste de travail local :

	
citbx_module_<nom de mon module>_define() : cette fonction peut être utilisée pour définir des options pour le cas d’utilisation sur un poste de travail ;

	
citbx_module_<nom de mon module>_setup() : cette fonction peut être utilisée pour effectuer une action avant de configurer et démarrer l’environnement de la tâche (docker run).

Le job peut définir les routines suivantes — applicables à tous les environnements :

	
citbx_module_<nom de mon module>_before() : cette fonction peut être utilisée pour effectuer une action avant l’exécution du job principal ;

	
citbx_module_<nom de mon module>_after() : cette fonction peut être utilisée pour effectuer une action après l’exécution du job principal et est appelée dans tous les cas (succès ou erreur) ; elle est appelée avec le code de retour du processus comme premier argument (0 en cas de succès).

Exemple de script de module : tools/gitlab-ci/modules/example.sh.

Liste des fonctions utiles

	
citbx_run_ext_job <nom de la tâche> : exécuter une autre tâche ;

	
citbx_job_list [prefix] : obtenir la liste des tâches (en option : avec le préfixe spécifié) ;

	
citbx_use <nom du module> : charger un module ;

	
print_critical <message> : affichage d’un message d’erreur et sortie (code de sortie : 1) ;

	
print_error <message> : affichage un message d’erreur ;

	
print_warning <message> : affichage un message d’avertissement .

	
print_note <message> : affichage un message de note ;

	
print_info <message> : affichage un message d’information.

Exemples de tâches

job-minimal

Exemple de tâche minimaliste.

Définition de la tâche :

image: ubuntu:16.04

job-minimal:
 stage: all-in-one
 script:
 - echo "Bonjour monde !"

after_script:
 - echo "job ${CI_JOB_NAME} end"

Exécution de la tâche :
[image: Tâche minimaliste]

job-with-before-after-script

Exemple de définition de tâche avec les propriétés before_script et after_script :

Définition de la tâche :

after_script:
 - echo "job ${CI_JOB_NAME} end"

job-with-before-after-script:
 stage: all-in-one
 before_script:
 - echo "exécuté avant"
 script:
 - echo "script"
 "sur plusieurs"
 - echo "lignes"
 - cat <<< $(echo 'salut !')
 after_script:
 - echo "exécuté après"

job-advanced

Exemple de définition d’un job (fichier tools/gitlab-ci/run.d/job-advanced.sh) avec options, arguments, traitements supplémentaires et utilisation de modules externes (fichier tools/gitlab-ci/modules/example.sh).

Définition de la tâche :

job-advanced:
 image: ubuntu:16.04
 stage: all-in-one
 variables:
 JOBADVAR: "${CI_JOB_NAME} JOBADVAR value"
 script:
 - echo ${GLOBALJOBVAR}
 - echo ${JOBADVAR}
 - tools/gitlab-ci/run.sh

after_script:
 - echo "job ${CI_JOB_NAME} end"

Exécution de la tâche :
[image: Tâche avancée]

job-test-services-mysql

Exemple de définition de tâche avec un service MySQL.

Définition de la tâche :

job-test-services-mysql:
 stage: build
 variables:
 MYSQL_DATABASE: test
 MYSQL_ROOT_PASSWORD: password
 CITBX_WAIT_FOR_SERVICE_START: 10
 image: mysql
 services:
 - mysql
 tags:
 - test
 script:
 - mysql -h mysql -u root -ppassword test -e 'SHOW VARIABLES LIKE "%version%";'

job-test-services-postgres

Exemple de définition de tâche avec un service PostgreSQL.

Définition de la tâche :

job-test-services-postgres:
 stage: build
 variables:
 CITBX_WAIT_FOR_SERVICE_START: 10
 image: postgres:9.4
 services:
 - name: postgres:9.4
 alias: db-postgres
 entrypoint: ["docker-entrypoint.sh"]
 command: ["postgres"]
 tags:
 - test
 script:
 - psql -h db-postgres -U postgres -c 'select version();'

Aller plus loin

	
Page du projet
(464 clics)

	
GitLab CI
(156 clics)

	
Page Wikipedia de GitLab CE
(150 clics)

	
GitLab
(91 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/8079bf4e99fa1d9b52d75441190d4c2e1d628d3e3f1246222fd9aa6c.png
Gitlab-CI job part run

Gitlab Cl runner N

Suitable environment

Workstation

Load the build
environment

Load the build
environment

2N 2
(Runthe job
_ saipts

EPUB/31b9c8ef0b317ae4d7198a800c59047c0891c6803874c2f7e6496f6f.png
Gitlab-CI job advanced run

Gitlab CI runner N Suitable environment Workstation

un
S toolslgilab-citn job-advanced
[et moase cranpe cetne- o e
| e tooisigiap-cimoduiesieamplesn |
P —
‘ job_define() - rom the file ‘
| toosigiabcinnajobavanceasn |
P —
[ot o oxampe soupy - am e
| e ooisigiap-cimoduiesieamplesn |
P ——
‘ job_setup() - fom the il ‘

Job triggered by Gitlab

toolsigitab-cirun.dfob-advanced.sh

Run the scrpt
§ echo S{GLOBALIOBVAR}
§ echo S{JOBADVAR}
S tools/gitiab-cilrun.sh:

citbx_module_example_before() - from the
il tools/gifab-ciimodules/example.sh

job_main) - from the file
toolsigiiab-cirun.djob-advanced.sh

job_after() from the file
toolsigiiab-cirun.djob-advanced.sh

§ echo ‘job S{CI_JOB_NAME} end"

‘ Runthe aferscrp ‘

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/78d05d8c068a5f4fb8677ad61d921c1081b5ee5993b0ac32c4d191cb.png
A

EPUB/752b9aa3888c76e0083d3907f3ea4afb45c61709d5f3841d9d783255.png
Gitlab-CI pipeline run

Gittab Gl runner N Gittab Server Workstation
[startthe s D
L %\fe\me J U
(Ran al previous
steps jobs
This job activiy is
Start the job) similar to the job
3
Environment prepare
(gt fetch, clean,
Checkoli,...
er jobs |
Load the build same
environment tep than job 1)
{docker run) R
Run the job Send the output
scripts to Giiab
30b7
(oo men s jg
(Run ai following
\ | steps jobs ¢
Suitable build | p . |
environment [Fmisntne |
to run the Job scrpts pipeline
Pipeiine
> resut

EPUB/191b581f91f5ce92cc5fbd753e9585f66470482e6b3447abb3303436.png
Gitlab-CI job minimal run

Gitlab Cl runner N

Suitable environment

Workstation

Job triggered by Gitlab

run
§ tools/gitlab-cifrun job-
‘minimal

§ echo "Hello world" ‘

‘L

Run the after script:
$echo "job S{CI_JOB_NAME}
end”

EPUB/428bc6e39a42679cccec96fe6266234d7c6b0de46ccca087e07619f5.png
Gitlab-CI job run.sh hooks execution order

Gitlab C1 Runner Workstation specific

<<MODULE>> Define hooks
using load order

<<MODULE>> Setup hooks
using oad order

<<J0B>> Setup hook

<<MODULE> > Before hooks.
using load order

Both environments.

<<MODULE>> After hooks
using reverse load order

EPUB/imagessections81.png

