

C++17 adapte le static_assert() aux usages

Posté par Adrien Jeser le 02 mars 2018 à 08:22.
Édité par Oliver, Bruno Michel, Benoît Sibaud et palm123.
Modéré par Nils Ratusznik.
Licence CC By‑SA.

Étiquettes :

	programmation

	langage_c

	c++17

	c++

	c

[image: C et C++]

[image: Un développeur annonce "C'est fini, Compilé c'est testé, Linké c'est livré. Face à son chef dubitatif, il ajoute "Le code est constexpr et les tests sont static_assert()"]

Spécification technique

Le TS [N3928] permet d'utiliser le static_assert(expr) avec un seul paramètre. Avant il fallait fournir un second : le paramètre message.

Changement

C++17 permet d'écrire static_assert(condition) avec un seul paramètre. Avant, seule la fonction static_assert(condition, message) était disponible avec le second paramètre message obligatoire.

// Les static_assert avec un message vide étaient courants
static_assert(sizeof(int) == 4, "");

// L'usage (mauvaise pratique?) a influencé C++17
static_assert(sizeof(int) == 4);

Renommer en constexpr_assert() ?

Pour l’anecdote, cette fonctionnalité aurait bien pu s'appeler constexpr_assert() car constexpr exprime qui est évalué lors de la compilation. Donc constexpr est plus précis que static dans le nom constexpr_assert(). La fonctionnalité static_if s'est bien fait renommer constexpr_if (voir l'historique de P0292).

Compilé c'est testé, linké c'est livré

Soulignons que les mots-clés constexpr et static_assert() permettent au C++ de réaliser l'adage "Compilé c'est testé, linké c'est livré" comme illustré par le comic strip ci-dessous.

[image: Un développeur annonce à son responsable "Compilé c'est Testé, Linké c'est Livré" puis explique que le code C++ est constexpr et les tests sont static_assert()]

Comment faisait-on avant ?

Profitons de cette petite dépêche pour parler un peu de méta-programmation.

Progressivement, dans les années 1990, quelques développeurs commençaient à utiliser détourner le mot-clé template pour avoir des assert() à la compilation. Initialement, le template avait été conçu pour la programmation générique, et le voilà propulsé pour ce qui deviendra quelques années plus tard la méta-programmation.

template <bool>
class Assert;

template <>
class Assert<true>{};

La classe template Assert<bool> n'est définie que pour la spécialisation <true>. La spécialisation <false> est volontairement non définie pour pousser le compilateur à afficher une erreur si utilisée. Si le code source utilise Assert<false>, le compilateur affiche l'erreur suivante :

	
implicit instantiation of undefined template 'Assert<false>' pour Clang entre la v3.3 et la v3.9 ;

	
aggregate 'Assert<false> Nom_de_la_variable' has incomplete type and cannot be defined pour GCC entre la v4.4 et la v7.

Pour t'exercer, tu peux jouer avec ces deux exemples disponibles sur godbolt.org :

int melange (int n)
{
 Assert<sizeof(n) == 4>
 La_fonction_melange_ne_gere_que_les_entiers_sur_4_octets;

 return (n<<16) + ((n<<8) & 0xF0) + (n>>16);
}

struct S
{
 float f;
 int i;
 bool b;
 char c;
 short s;
};

Assert<sizeof(S) == sizeof(S().f)
 + sizeof(S().i)
 + sizeof(S().b)
 + sizeof(S().c)
 + sizeof(S().s)>
 La_structure_S_ne_doit_pas_avoir_de_padding;

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/687cb54ee44d8f485c6dda44dccf038374843b728e38eca94e2d6324.png

EPUB/imagessections78.png
%

