

CAMP 0.7.0 : bibliothèque de réflexion en C++ sous LGPL

Posté par Florent Zara (site web personnel, Mastodon) le 16 juin 2010 à 01:52.

Modéré par Nÿco.

Étiquettes :

	développeur

[image: Technologie]

La réflexion (ou introspection) est un mécanisme qui permet à un programme d'examiner, voire de modifier ses structures internes. En d'autres termes, c'est la capacité d'un programme à examiner son propre état. Cela permet par exemple d'effectuer des mesures de performance, d'inspecter des modules, de déboguer un programme, ou encore de le faire d'évoluer automatiquement en fonction des besoins et de l'environnement.

Certains langages de programmation offrent ce type de fonctionnalité, notamment Smalltalk, Java et C#, qui fournissent des outils pour connaître et utiliser la classe d'un objet, ses propriétés et ses méthodes (on parle en général de méta-classe, de méta-propriété et de méta-fonction).

L'introspection peut être utilisée pour fournir des bindings vers des langages de script, pour écrire des éditeurs de propriétés, ou faire de la sérialisation. L'intérêt étant que le code de ces outils est écrit une fois pour fonctionner sur la structure abstraite (méta-classe, méta-propriété, méta-fonction), et peut ensuite être utilisé dans n'importe quel programme.

Malheureusement, le langage C++ ne fournit aucun moyen de faire de la réflexion. Il existe cependant un certain nombre de bibliothèques fournissant ce type de fonctionnalité, la plus connue étant probablement Qt avec ses QObjects.

Cependant, pour générer toutes les « méta-informations » nécessaires à la réflexion, la majeure partie de ces bibliothèques requiert soit d'utiliser un pré-compilateur (moc pour Qt), soit de déclarer ses informations en ajoutant tout un tas de macros dans l'en-tête de chaque classe ; C++ Mirror faisant exception. De plus, il est souvent nécessaire d'hériter d'une classe de base (QObject pour Qt).

Ceci a amené Tegesoft à développer CAMP, une bibliothèque de réflexion généraliste pour C++. CAMP utilise intensivement les templates C++, ainsi que boost (ensemble de bibliothèques C++ permettant d'étendre les fonctionnalités du langage). Il est non-intrusif, à l'exception de la gestion du polymorphisme pour les méta-classes ; une alternative basée sur le RTTI (Run-Time Type Information : fait de déterminer, à l'exécution du programme, le type d'une variable, dans les langages orienté-objet) du langage devrait être ajoutée dans la prochaine version.

CAMP ressemble à Luabind ou à boost::python, mais est généraliste. De ce fait, il est possible d'écrire un module pour CAMP permettant d'embarquer un interpréteur Python, un autre pour embarquer un interpréteur Lua, ou encore un pour faire de la sérialisation XML, l'intérêt étant que le binding des classes n'est fait ici qu'une seule fois. Lorsqu'un nouveau module pour CAMP est disponible, vous n'avez aucun binding supplémentaire à écrire.

Le mieux dans tout ça ? C'est sous LGPL ! La version 0.6.0 de CAMP était déjà distribuée sous GPL, mais une licence plus permissive a été choisie afin de favoriser l'utilisation de la bibliothèque.

De plus, un nouveau site internet (basé sur Redmine) est disponible, avec bug tracker, wiki, et documentation de l'API. Le code est quant à lui hébergé sur GitHub. Un forum est également disponible.

Aller plus loin

	
Site du projet
(409 clics)

	
Forum du projet
(63 clics)

	
Code source sur GitHub
(141 clics)

	
Site de Tegesoft
(120 clics)

	
Journal à l'origine de la dépêche
(30 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

