

CodeWorker 4.4

Posté par Ontologia (site web personnel) le 25 novembre 2007 à 19:00.

Modéré par j.

Étiquettes :

	développeur

[image: Technologie]

CodeWorker est un outil d'automatisation du développement, sous GNU LGPL. Cet outil se propose d'être un générateur de code universel, capable non seulement de générer du code, mais de générer celui-ci en l'injectant dans du code existant.

Cordeworker se matérialise comme un interpréteur d'un langage de script intégrant la possibilité de définir une grammaire BNF du langage à parser ou du source cible dans lequel on veut injecter du code. La génération se décrit à l'aide de modèles de génération (template-based scripts), décrivant le remplissage d'un graphe de parsing pendant l'analyse. Ce graphe pourra ensuite être manipulé.

Sa force réside dans sa souplesse totale : on peut lui faire lire un source en C++ ainsi que des information en XML, pour injecter du code dans du Java. Partant de là, et de grammaire BNF decrivant XML, Java, etc... on peut imaginer toutes sortes d'outils. Notons le mode JEdit prenant en charge la coloration syntaxique pour CodeWorker.

CodeWorker est donc un outil puissant, stable, qui a sûrement besoin de contributions comme des scripts pour analyser toutes sortes de langages et ainsi permettre de nombreuses manipulations !
Le langage de script est un petit langage adapté à la manipulation de graphe.

La définition de variable est assez simple et non typée :

local nombre = 26.7;

local chaine = "vingt six virgule sept";

local booleen = (nombres == chaines);

local dictionnaire;

insert dictionnaire["Requin"] = "Petit poisson marinant dans l'huile";

insert dictionnaire[3.141592] = "Premiers chiffres de Pi";

local jouet;

insert jouet.categorie = "voiture";

insert jouet.alimentation = "piles";

insert jouet.alimentation.quantite = 4;

insert jouet.alimentation.taille = "LR6";

insert jouet.nombrepiece["aileron"] = 1;

La syntaxe, se veut proche des standard C/Java avec une teinte langage de script sans typage.

local especeAnimale;

insert especeAnimale["Mireille"] = "abeille";

insert especeAnimale["Camille"] = "chenille";

function traiteespeceAnimale(esp : node) {

 foreach i in esp {

 if first(i) {

 traceLine("premier élément = '" + i.key() + "'");

 } else if last(i) {

 traceLine("dernier élément = '" + i.key() + "'");

 }

 traceLine("clé = '" + key(i) + "' valeur = '" + i + "'");

 }

return false;

}

esp : node signifie passage par référence, le comportement par défaut étant de passer par valeur.

Le grand intérêt de ce langage est de permettre de définir une grammaire BNF pour récupérer des données :

nombre ::= #ignore(blanks) flottant | entier;

entier ::= ['-']? ['0'..'9']+;

flottant ::= entier '.' entier ['e' entier]?;

identifiant ::= [lettre | '_'] [lettre | '0'..'9' | '_']*;

lettre ::= 'a'..'z' | 'A'..'Z';

l'intérêt étant ensuite de pouvoir définir des règles de générations :

flottant ::=

 #!ignore

 entier '.' #continue !'-' entier

 [

 'e' #continue

 entier:iExposant

 => traceLine("valeur de l'exposant = " + iExposant);

]?

Des manipulations beaucoup plus complexes sont décrites dans le tutoriel disponible sur le site Developpez.com
Aller plus loin

	
CodeWorker
(33 clics)

	
Tutoriel complet
(141 clics)

	
Repository of scripts
(15 clics)

	
Fiche sur Framasoft
(23 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

