

Common Lisp ces deux dernières années: un monstre de l'évolution parmi nous

Posté par dzecniv le 26 juin 2025 à 11:00.
Édité par vmagnin, BAud et Benoît Sibaud.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	common_lisp

	langage_de_programmation

[image: Programmation]

Le langage Common Lisp n’est pas un dinosaure éteint. À l’instar de certains requins, c’est une bestiole qui n’a cessé d’évoluer pour devenir un prédateur redoutable aujourd’hui. C’est un langage qui éclate l’auteur du journal à l’origine de cette dépêche, dzecniv, au quotidien depuis des années, avec lequel il déploie certains services facilement (venant de Python, il apprécie le déploiement), alors il a de nouveau rédigé un petit récapitulatif de ce qui s’est passé dans cet écosystème ces deux dernières années.

Vous prendrez garde à ne pas conclure que les bibliothèques et projets qui sont présentés ici sont les seuls de leur domaine, ni que tous les nouveaux projets sont listés, ni qu’il s’agit d’un aperçu complet de l’écosystème.

Sommaire

	Hacker News est passé de Racket à Common Lisp (SBCL)

	C’est quoi Common Lisp ?

	La communauté

	Documentation

	
Les implémentations
	SBCL

	ABCL - CL pour Java

	CCL, LispWorks, Allegro, ECL, CLASP, SICL, LCL, Alisp, Medley

	Industrie, offres d’emplois

	
Projets cools
	Éditeurs

	Coalton : comme Haskell, pour Common Lisp

	Les gestionnaires de bibliothèques

	Développement de jeux

	Interfaces graphiques

	Le web, les web views, Electron

	Scripting

	Vidéos

	Conclusion

(NdM: dans la suite, l'auteur du journal à l’origine de la dépêche s'exprime à la première personne)

Pour avoir un aperçu plus global de l'écosystème, veuillez faire une petite recherche sur GitHub, surveillez reddit/r/lisp et reddit/r/common_lisp, utilisez un moteur de recherche, ou commencez par jeter un coup d’œil sur la liste awesome-cl.

Il me tient à cœur de faire cette liste, car de l’extérieur on ne se rend pas forcément compte à quel point, certes, le langage et l’écosystème sont stables, mais qu’ils évoluent également.

S’il fallait en choisir trois, je mettrais ces travaux en avant :

	je suis impressionné par tout ce qui se passe autour de l’implémentation SBCL (et des travaux en cours sur ECL et ClozureCL)

	j’adore l’éditeur Lem, et suis également impressionné par tous les modules qu’il comporte déjà, par la qualité de sa base de code et par la facilité avec laquelle on peut l’explorer, ce qui est aussi rendu facile par l’interactivité du langage

	plusieurs outils pour écrire et exécuter des scripts plus rapidement que d’habitude émergent, et sont nécessaires à mon avis.

Bonne découverte.

	article originel : https://lisp-journey.gitlab.io/blog/these-years-in-common-lisp-2023-2024-in-review/

[image: Opus Modus v3]

Hacker News est passé de Racket à Common Lisp (SBCL)

C’est une nouvelle plutôt cool pour nous les publicitaires pro du langage. HN a été développé avec le dialecte de Lisp Arc, initialement implémenté avec Racket, et pour des questions de performance ils l’ont ré-implémenté en Common Lisp, avec SBCL.

Pour plus de contexte : Paul Graham (avec Robert Morris) crée Viaweb en 1995, le premier fournisseur d’applications en ligne (pour garder la terminologie de Wikipédia, page Paul Graham), développé en Common Lisp, avec l’implémentation CLisp. Cette implémentation existe toujours et est légèrement développée, mais il est généralement conseillé d’utiliser SBCL (qui colle mieux au standard, qui est plus performante, qui donne plus d’indications de typage pendant le développement, etc.). “PG” vend Viaweb à Yahoo en 1998 (pour ce qui devient Yahoo! Store), et fonde l’incubateur de start-ups YCombinator. PG n’était pas satisfait par Common Lisp, au tout au moins (là, je n’ai pas les sources) voulait un dialecte plus succinct, qui permette d’écrire des applications web de manière plus compacte. Il ébauche un dialecte de Lisp, appelé Arc, et l’implémente avec Racket (MzScheme à l’époque). Le site de Hacker News (géré par YCombinator) fut donc écrit en Arc avec cette première implémentation.

Le responsable (ou un des responsables) du portage vers SBCL et modérateur d’Hacker News, dang, explique :

[Clarc, l’implémentation en Common Lisp] est beaucoup plus rapide et permet de faire tourner HN sur plusieurs cœurs. Ça a été un travail de fond de quelques années, principalement parce que je ne trouve pas le temps pour travailler dessus.

Les sources du site d’HN ne seront pas publiées pour ne pas dévoiler de multiples mécanismes anti-spam et anti-abus (les séparer du code source serait « beaucoup de travail »), mais les sources de Clarc pourraient l’être, avec un peu plus d’efforts pour les séparer du code d’HN.

https://lisp-journey.gitlab.io/blog/hacker-news-now-runs-on-top-of-common-lisp/

C’est quoi Common Lisp ?

C’est un langage multi-paradigmes, et selon les implémentations, comme avec SBCL : compilation en code machine très performant, typage graduel, très interactif :

	débogueur interactif, permet de corriger une fonction, de la re-compiler et de reprendre l’exécution depuis la fonction boguée, sans devoir tout relancer de zéro (démo youtube)

	ne perd pas l’état du programme en cours quand on travaille avec un bon éditeur

	permet même de contrôler comment des instances sont mises à jour lorsque la définition d’une classe change (pas forcément utile pour le quotidien on est d’accord, encore que, quand on sait le faire on en tire parti, mais c’est pensé pour les systèmes à longue durée de vie, qu’on peut patcher pendant qu’ils tournent),

	un REPL avec beaucoup de fonctionnalités (ne redémarre jamais, on peut installer des bibliothèques depuis le REPL), extrêmement utile et satisfaisant en tant que développeur (j’en ai toujours un d’ouvert),

	on compile fonction par fonction avec un raccourci clavier, SBCL nous donne beaucoup de warnings et d’erreurs de typage instantanément (et pour du Haskell intégré dans Common Lisp, cf. Coalton ci-dessous).

Définir une fonction :

(defun hello ()
 (print "hello!"))

;; Appeler la fonction:
(hello)

Compiler la fonction :

	soit C-c C-c depuis tout bon éditeur, sans quitter le programme, sans redémarrer quoi que ce soit,

	soit C-c C-k depuis l’éditeur, pour re-compiler le fichier,

	soit sbcl --load hello.lisp depuis la ligne de commande (ce qu’on va donc faire rarement, seulement de temps en temps pour vérifier que ça passe, pour construire un binaire, pour déployer depuis les sources…)

Liens :

	https://lisp-lang.org/

	les bons éditeurs aujourd’hui : https://lispcookbook.github.io/cl-cookbook/editor-support.html (Emacs, Vim, Pulsar, Jupyter notebooks, VSCode, Sublime…)

La communauté

Elle est active, il y a des évènements IRL réguliers dans quelques villes, l’European Lisp Symposium chaque année…

On peut voir les chiffres de la communauté reddit/r/common_lisp (plus petite que le plus général “lisp”),

La communauté est présente sur reddit, Discord (lien: https://discord.gg/hhk46CE), IRC, Mastodon, LinkedIn…

Documentation

On a la chance d’avoir de très bons livres sur CL, mais historiquement peu de doc en ligne. Ça évolue.

Les spécifications du langage ont été portées vers des sites beaucoup plus sympas à l’utilisation que le site de référence, comme le Common Lisp Community Spec, site également publié sous licence libre,

Le Common Lisp Cookbook reçoit un bon nombre de contributions. On peut le trouver en EPUB : https://github.com/LispCookbook/cl-cookbook/releases/tag/2025-01-09

Le livre PAIP est maintenant disponible en ligne : https://norvig.github.io/paip-lisp/#/

J’ai sorti un nouveau site sur le développement web en Common Lisp : https://web-apps-in-lisp.github.io/index.html

FreeCodeCamp a publié un cours “complet” sur Youtube : https://www.reddit.com/r/Common_Lisp/comments/1i1e766/lisp_programming_language_full_course_for/

cf. d’autres vidéos sympas ici : https://www.cliki.net/Lisp%20Videos

J’ai sorti neuf vidéos (1h22) pour expliquer CLOS, le système objet : https://lisp-journey.gitlab.io/blog/clos-tutorial-in-9-videos-1h22min--read-the-sources-of-hunchentoot-and-kandria/

Les implémentations

Il s’en passe des choses.

SBCL

SBCL a toujours des sorties mensuelles : https://www.sbcl.org/news.html

SBCL s’est vue dotée d’un nouveau GC.

Entre autres choses, rapidement :

	appeler SBCL comme une bibliothèque partagée depuis C ou Python, avec sbcl-librarian (par les mêmes personnes derrière Coalton) (recette sur le Cookbook),

	compilation croisée pour Android

	support pour Haiku

	« memory allocation arenas » pour arm64

	améliorations du module sb-simd

	SBCL est porté pour la Nintendo Switch, pour les besoins du jeu Kandria (cf plus bas)

	installation facile sur Windows avec Chocolatey (non officiel)

	ou des builds quotidiens pour MSYS2

ABCL - CL pour Java

ABCL a sorti des nouvelles versions :

	ABCL 1.9.1

	1.9.2

	nouvel outil : ABCL memory compiler

Et Clojure ? Je ne connais qu’à peine (ça reste du Java, ça reste gourmand en ressources, le REPL est moins riche en fonctionnalités, le langage ne donne pas d’erreurs de type à la compilation avec un C-c C-c), donc je peux juste citer d’autres lispers. cf. :

	
Clojure VS Common Lisp (pas forcément très partial)

CCL, LispWorks, Allegro, ECL, CLASP, SICL, LCL, Alisp, Medley

Ces implémentations sont actives.

ECL a un module pour WASM, en cours de développement mais qui permet déjà de lancer Maxima, un logiciel de calcul formel, dans un navigateur.

Breaking news: ECL vient d'être accepté par NLNet pour justement travailler sur ce module.

Pour info, on peut également utiliser Maxima via SageMath, avec KDE Cantor, avec l'interface graphique wxMaxima, sur Android, dans un "notebook" Jupyter, via Emacs avec le paquet "maxima-mode", et on peut faciliter son utilisation depuis un REPL Common Lisp et avec maxima-interface.

CLASP, pour interfacer CL et C++ nativement, est toujours développé par une start-up en bio technologies :

	https://www.youtube.com/watch?v=tQgkvghzW0M

SICL est peut-être le futur de Common Lisp. C’est une nouvelle implémentation, modulaire. Des bouts sont déjà utilisés dans d’autres implémentations.

Medley est la ré-incarnation de la Medley Interlisp Lisp Machine. Je ne l’ai pas connue, trop jeune. On peut la tester via un navigateur.

	https://interlisp.org/project/status/2023medleyannualreport/

LCL pour Lua Common Lisp est une nouvelle implémentation, Alisp est une nouvelle implémentation en cours de développement (en C).

Industrie, offres d’emplois

Il y a peu d’offres, publiques en tout cas, on voit des opportunités passer de manière moins formelle sur les réseaux. Mais il y en a (cf. le lien original, par ex. une offre pour 3E à Bruxelles).

Et oui, certaines entreprises utilisent toujours Common Lisp, et certaines entreprises choisissent de leur plein gré ce langage comme base de leurs nouveaux produits. On le voit surtout dans le domaine de l’informatique quantique, et toujours pour une certaine forme d’IA. Mais des boîtes plus classiques peuvent en tirer parti. On voit des logiciels de management de projet (Planisware, cocorico c’est une boîte française, développé avec l’implémentation Allegro), du développement web, des bots internet…

Quelques exemples :

	https://keepit.com/

	https://graphmetrix.com/Aconex

	https://blog.funcall.org/lisp%20psychoacoustics/2024/05/01/worlds-loudest-lisp-program/

	https://www.ravenpack.com/

	pour plus : awesome lisp companies

et des usages, moins dans l’actualité :

	comment pgloader est passé de Python à Common Lisp : https://tapoueh.org/blog/2014/05/why-is-pgloader-so-much-faster/

	Google : ITA Software (propulse les réservations de vols en ligne)

	
http://www.siscog.pt/ (quand vous prenez le métro dans une capitale européenne telle que Londres ou Lisbonne, il y a un système Lisp derrière)

	
ScoreCloud: une application mobile (LispWorks) qui écrit la partition musicale de ce que vous jouez, chantez ou sifflotez

	etc.

Projets cools

Éditeurs

Éditeurs pour Lisp : https://lispcookbook.github.io/cl-cookbook/editor-support.html (il y en a d’autres qu’Emacs, mais essayez donc !)

Lem : https://lem-project.github.io/

Construit en CL, il est donc extensible à la volée en Lisp, comme Emacs. Contient un client LSP qui fonctionne pour de nombreux autres langages, et des modes syntaxiques plus classiques pour nombre d’autres.

Quelques fonctionnalités de Lem :

	mode vim et Emacs

	interface Git interactive (opérations classiques, rebase interactive (sans les actions “edit” ou “reword”))

	navigateur de fichiers

	panneau de navigation

	terminal via libvterm

	curseurs multiples

	pour le terminal (ncurses) et le bureau (SDL2), et une version “cloud” pour édition collaborative en chantier.

	Tetris (en mode graphique)

[image: Lem filer]

Nouveau projet : Neomacs https://github.com/neomacs-project/neomacs basé sur Electron

Coalton : comme Haskell, pour Common Lisp

En les citant, Coalton c’est :

the implementation of a static type system beyond Haskell 95. Full multiparameter type classes, functional dependencies, some persistent data structures, type-oriented optimization (including specialization and monomorphization). All integrated and native to CL without external tools.

C’est une bibliothèque logicielle qu’on installe comme n’importe quelle autre, mais qui fournit un autre langage pour écrire des programmes typés statiquement, tout en s’interfaçant de manière native avec son langage hôte.

Coalton est développé à l’origine pour des boîtes dans l’informatique quantique. Cf le compilateur quilc.

Ce n’est donc pas un jouet. Et si les développeurs ne font pas un tonnerre de tous les diables pour montrer leur travail incroyable, c’est qu’ils bossent ;) (mais ils répondront au FUD sur HN).

Les gestionnaires de bibliothèques

Depuis au moins 10 ans, le « package manager » qui rend de fidèles services est Quicklisp. Il sort des distributions de bibliothèques, qui ont été vérifiées pour charger correctement. La dernière en date était en octobre :

	http://blog.quicklisp.org/2024/10/october-2024-quicklisp-dist-update-now.html

Et oui, elle date un peu. Plusieurs explications à cela, à lire et discuter par ailleurs.

Aujourd’hui, de nouveaux outils émergent:

	
https://github.com/ocicl/ocicl « pour tirer parti du monde des containers »

	Ultralisp (basé in-fine sur l’outil Quicklisp, mais pas son mode de distribution), continue à évoluer : https://github.com/ultralisp/ultralisp/

	Qlot évolue (pour des dépendances par répertoire, à la pip, npm etc, comme ocicl d'ailleurs) https://github.com/fukamachi/qlot/releases/tag/1.4.1

	un nouvel outil, qui permet de simplement “vendorer” ses dépendances (les inclure, comme du code, dans son projet) : https://github.com/fosskers/vend

Développement de jeux

Le meilleur exemple dans ce domaine est Kandria, qui est sorti sur Steam :

	https://kandria.com/

	
retours d’expérience (anglais): où oui, Common Lisp (ici SBCL) est assez performant pour faire tourner un jeu, y compris sur la Nintendo Switch, à condition de surveiller la création d'objets en mémoire.

Son auteur augmente maintenant son moteur de jeu pour la 3D. On peut le suivre et voir une démo sur Mastodon.

On trouvera d’autres ressources, par exemple :

	ECS and metalinguistic abstractions

	un petit jeu : Nano Towers

Une fonctionnalité incroyablement utile pour les développeurs, est qu’on peut développer son jeu pendant qu’il tourne. Compiler une fonction avec C-c C-c, et voir le jeu changer. Sans tout relancer de zéro à chaque fois.

La communauté organise 2 fois par an des « Lisp Game Jam ». Où tous les dialectes de Lisp sont permis ;)

Interfaces graphiques

C’est un large sujet, et de multiples bibliothèques existent, plus ou moins faciles à prendre en main, plus ou moins portables, etc. Mais voyez la capture d’écran d’Opus Modus en introduction : c’est bien un logiciel graphique multi-plateformes. Dans ce cas, développé avec LispWorks. Par ailleurs, LispWorks possède un “runtime” pour Android et iOs.

Je vais vous laisser voir awesome-cl ou l’article original.

Le web, les web views, Electron

Le web en Common Lisp c’est faisable (et je le fais), on a pas mal de bibliothèques pour divers besoins, on a quelques “frameworks”, minimalistes. Il faut être prêt à mettre les mains dans le cambouis, à mieux connaître le web que lorsqu’on utilise des “frameworks” de haut niveau qui ont beaucoup de couches d’abstraction. Ceci dit, la malléabilité du langage, sa performance, son multi-threading, ses excellents outils de développement, ses fonctionnalités avancées, son déploiement facile… font que certaines choses compliquées dans un autre langage, ou qui nécessiteront une bibliothèque, se font en quelques lignes de manière native.

Ce qui me plaît, c’est la stabilité du langage et de l’écosystème, l’efficience des programmes (de l’ordre de C ou Java, une comparaison parmi d'autres, retours à trouver dans ses articles postérieurs et sur HN), et encore et toujours l’interactivité pendant le développement, le fait que le serveur de développement ne redémarre jamais, ne me fait pas attendre et reste réactif, et comme je disais plus haut le déploiement d’applications, facile : je peux générer un binaire de mon appli web, comprenant tous les fichiers statiques (templates HTML, le JavaScript, etc), le copier sur mon serveur, et c’est tout. Ou le vendre et ne pas devoir accompagner mon client pendant l’installation.

C’est ce que dit aussi l’auteur de Screenshotbot (projet open-source d’automatisation de prise de captures d’écran). Quand sa concurrence fait installer ses solutions via npm, il livre un petit binaire qui fait tout. Et j’ai bien dit petit, donc ±10Mo pour le projet et toutes ses dépendances, car il utilise LispWorks, qui permet d’enlever le code mort de l’image finale, alors que SBCL ne permet pas (encore ?) cela et les binaires pèsent ±30Mo compressés, 80Mo non compressés. Néanmoins, un binaire (compressé) de 30Mo (c’est le cas pour une application à moi qui inclue une douzaine de dépendances) contient le débogueur, le compilateur… ce qui permet de se connecter à une application pendant qu’elle tourne et de charger du code à la volée. On peut s’en servir pour observer ce qu’il se passe autant que pour faire des mises à jour. Au choix ! Mais oui, on peut garder les bonnes pratiques de l’industrie.

Pour démarrer sur le sujet :

	https://lispcookbook.github.io/cl-cookbook/web.html

	
https://github.com/CodyReichert/awesome-cl/

	https://web-apps-in-lisp.github.io/

	https://dev.to/rajasegar/building-a-rentals-listing-web-application-in-common-lisp-4nn3

Comme outils moins classiques, on a CLOG (CL Omnificient GUI), qui permet le développement d’applications web un peu comme une interface graphique, avec une grande interactivité pendant le développement (via websockets).

[image: CLOG]

L’infatigable lisper @mmontone se lance dans mold-desktop, un desktop pour le web, en suivant les principes de « moldable software ».

[image: mold-desktop]

Enfin, un article pour présenter les trois « web views » pour Common Lisp: webview, webui, Electron. On peut délivrer une application multi-plateformes écrite avec les technologies du web.

[image: Une application web lancée en local dans un navigateur, avec webview]

Scripting

En Common Lisp peut lancer un programme depuis les sources, ou bien générer un exécutable.

Mais, par défaut, l’un ou l’autre sont un peu lourds à l’usage et ne satisfont pas vraiment le développeur pressé qui souhaite lancer un petit script écrit en Lisp. C’est aussi un peu pour cela qu’on reste tant dans le REPL, où toute procédure une fois définie est instantanément appelable. On n’a pas véritablement besoin de passer par le terminal.

Mais des projets élargissent les possibilités.

kiln: « Infrastructure for scripting in Common Lisp to make Lisp scripting efficient and ergonomic » - soit, pouvoir appeler du Lisp depuis le shell de manière légère.

unix-in-lisp - il paraît fou ce projet : on “monte” les utilitaires Unix dans son image Lisp.

CIEL Is an Extended Lisp (discussion HN) - 100% Common Lisp, « batteries included »

	une collection de bibliothèques pour rendre CL plus utile au quotidien aujourd’hui : inclue des bibliothèques pour le JSON, le web, le CSV, les expressions régulières…

	un moyen de lancer des scripts au démarrage rapide et sans étape de “build”, avec toutes les bibliothèques à disposition.

Vidéos

Voici une petite sélection.

Des démos d’applications :

	AudioVisual in CommonLisp (cl-collider, cl-visual) (screencast)

	Cheesy trailer for recent kons-9 3D graphics features.

	Drum N Bass in CommonLisp

	Drum and Bass with a Counterpoint - How to Tutorial - Opusmodus

	How Lisp is designing Nanotechnology (Developer Voices, with Prof. Christian Schafmeister) (Youtube)

	How to Package Common Lisp Software for Linux? EN Subs (alien-works-delivery, linux-packaging)

	Melodic Techno - How to Tutorial - Opusmodus

	The Opusmodus Studio - Everything I didn't know I needed - Subject Sound (YouTube)

	Welcome to Opusmodus (Youtube)

Apprendre :

	
Nekoma Talks #19 - Common Lisp from a Clojurian perspective Part 2 (YouTube), part 1

De l’European Lisp Symposium 2024 :

	An Introduction to Array Programming in Petalisp, by Marco Heisig, ELS 2024

Conclusion

C’était un compte-rendu écourté qui vous aura, je l’espère, donné envie d’en voir plus.

En Common Lisp on s’éclate ET on délivre du logiciel, ce qui n’est pas donné à tout le monde ;)

Aller plus loin

	
Journal à l’origine de la dépêche
(69 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/238127562c3df9a53b8b8fe723e9647b8a5bd539faf2ca687e5e1ea6.webp

EPUB/7f7e4ada742e5b3b09de71a0e0aadd04be7273737312246682396e10.png
[0: filer.lisp
> B.git/ (defpackage :lem/filer
.github/ (:use :cl :lem))
> @contrib/ (in-package :lem/filer)
@bracket-paren-mode/
Wcalc-mode/ (defparameter *right-pointing-triangle* (uiop:strcat (string (code-char #x25B8)) " "))
®fbax/ (defparameter *down-pointing-triangle* (uiop:strcat (string (code-char #x25BE)) " "))
#google-translate/
@man/ (defun open-directory (point pathname)
@migemo/ nwith—point ((point point :left-inserting))
@modeline-battery/ (line-end point)
@mouse-sgr1006/ (insert-character point #\newline)
@selection-mode/ (insert-directory-contents point pathname 2)))
Wtetris/
@trailing-spaces/ (defun select (point pathname)
@version-up/ (cond ((uiop:directory-pathname-p pathname)
G0 README . md (if (text-property-at point :is-open)
&]em-contrib.asd (message "close")
@docs/ (open-directory point pathname)))
@ default-keybindings.md (t
@document/ (when (typep (current-window) 'lem-core:side-window)
frontends/ (other-window))
@ language-server-protocol/ (find-file pathname))))
1lib/
@modes/ (defun insert-pathname (point pathname directory)
roswell/ (if (uiop:directory-pathname-p pathname)
@ screenshots/ (insert-string point *right-pointing-triangle* :attribute (make-attribute :bold t :foreground "light blue"))
@scripts/ (insert-string point " "))
> @build/ (with-point ((start point))
> @gen-contrib/ (lem/directory-mode: :insert-icon point pathname)
B .gitignore (insert-string point
B copy-shared. ros (enough-namestring (namestring pathname) directory)
B gen-desktop.ros :attribute (lem/directory-mode::get-file-attribute pathname)
Wsxc/ :pathname pathname
#® submodules/ :is-open nil)
Wtests/ (lem-core::set-clickable start
B .DS_Store point
B .gitignore (lambda (window point)
B .gitmodules (declare (ignore window))
EB CONTRIBUTING.md (select point pathname)))))
G0 ChangeLog.md
B LICENCE (defun insert-directory-contents (point directory &optional (offset 0))
BlMakefile.am (loop :for pathname :in (list-directory directory)
GO README . md :for first := t :then nil
@bootstrap :do (unless first (insert-character point #\newline))
&huild.lisp (insert-string point (make-string offset :initial-element #\space))
B configure.ac (insert-pathname point pathname directory)))
& lem-tests.asd
& lem.asd (defun make-filer-buffer (directory)
'Wpackage.json (let ((directory (probe-file directory)))
(let* ((buffer (make-buffer "*Filer*"))
(point (buffer-point buffer)))
(erase-buffer buffer)
(insert-directory-contents point directory)
filer.lisp LEM/FILER sbcl:SELF

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b648521d8a86370f36114e712cc23192ad0e3a129a8418e973bdd1cf.png
-rwxr-xr-x 1 dbotton
-rw-r--r-- 1 dbotton
-rw-r--r-- 1 dbotton
drwxr-xr-x 2 dbotton
drwxr-xr-x 2 dbotton
drwxr-xr-x 2 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
-rwxr-xr-x 1 dbotton
drwxr-xr-x 2 dbotton
drwxr-xr-x 9 dbotton
drwxr-xr-x 4 dbotton
drwxr-xr-x 2 dbotton
drwxr-xr-x 2 dbotton
drwxr-xr-x 4 dbotton

$

dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton
dbotton

OS Shell - LINUX - dbasusai

clog.asd.bak
clogframe

demos

doc
make-builder
make-builder.bat
make-docs
make-docs.bat
run-builder
run-builder-ccl
run-builder-ecl
run-builder.bat
run-render
source
static-files
templates

test

tools

tutorial

static-root: /home/dbotton/common-lisp/clog/static-files/

v

EPUB/f4402e253c598f2137045c431d00246bd440b913ba6c4506d8fa3d42.png
L]
File Edit Tools View Window Help
®OO®OO
ABC.pdf
+ . Examples

Introduction to OMN.pdf
-7 Lesson 1 - OMN
1. Start here.pdf
(- 2. Full score.opmo
(- 3. The first bar.opmo
(- 4. Attributes.opmo
(- 5. Disassemble OMN.opmo
(- 6. Make OMN.opmo
-7 Lesson 2 - Algorithmic
1. Start here.pdf
- 2. Full score.opmo
- 3. Vectors.opmo
- 4. Pitches.opmo
. 5. Variants.opmo
- 6. Lengths.opmo
- 7. Dynamics.opmo
- 8. Scoring.opmo
-7 Lesson 3 - Algo & OMN
1. Start here.pdf
(- 2. Full score.opmo
(- 3. Pitches.opmo
(- 4. Sixteen chords.opmo
(- 5. Vocal rhythm.opmo
(- 6. Chords.opmo
(- 7. Chord sequence.opmo
(- 8. Time signature.opmo
-~ MIDI
L) Bach - Art of Fugue - Reg1.mid
. Bach - Goldberg Variations - A
Quick Guide.pdf
(- score.opmo
-7 Scores
(- Maderna.opmo
(- Program Changes in OMN.opn
(- Traingle.opmo
(- Webern.opmo
Welcome to Opusmodus.pdf

Vo ==

< > (.4 Sixteen chords.opmo

555 Lesson 3 - Algorithmic & OMN
555 4. Sexteen chords

;5 View this as a reference score putting the 16 chords
;5 we've generated into a grand stave - so we could

print out the algorithmically derived chords and
experiment / improvise with them as the harmonic
basis of the song.

R
R

R

Isetf alto (integer-to-pitch (rnd-number 18 © 5 :seed 19»
N

(setf soprano (integer-to-pitch (rnd-number 18 7 14 :see»
d 20)))

(setf tenor (integer-to-pitch (rnd-number 18 -7 -3 :seed»
21)))
(setf bass (integer-to-pitch (rnd-number 18 -9 -16 :seed»

23)))

(setf sa (pitch-mix (list soprano alto)))

(setf tb (pitch-mix (list tenor bass)))

(setf sec '(@0 2456811 12 15 16 17))

(setf sa-i (pitch-invert-start 'gs4 (mclist sa) :section»
sec))

(setf sa-span (span sa '(h)))

(setf tb-span (span tb '(h)))

(setf phrase-rh-1 (make-omn :length sa-span :pitch sa-i)»
)

(setf phrase-1lh-1 (make-omn :length tb-span :pitch tb))

;5 This is section of the code where lengths have been

;5 added and brought together with pitch using into OMN
;5 lists. Evaluate phrase-rh-1 and phrase-1lh-1 looking a»
t

;5 the output in the LISTENER.

(def-score Chords-OL
(:key-signature '(c maj)
:time-signature '(2 4)
:tempo 60
:layout (piano-layout 'piano-rh 'piano-1lh))

&0 E

OM 9 > audition-musicxml-omn-snippet
nil

S50 0OM 10 >

&8 MIDI Player: Bach - Art of Fugue - Reg1.mid

X

90

0:43

Pause Rewind

Zoom To Fit

Zoom In

File Edit Tools View Window Help
X |[&] < > ..Bach-Artof Fugue - Regl.mid
2 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 =
8
7
6
L
1]
- 11
] - 1 W -
mom 1 | 1 B m - o
- 1 n
5]] - LTI 1 1]
1 1 [u 1 T
-] 1] 1 n =
[W emmm i oimE I W (EEIE R mWom oW
1 - m 1 | L - 1omimE m
[1 . [1 1 W11
m im iAW W5 n LI LENAL
—— i minm imoE Em miEEE : [RRCRRNCE | |
4 mm 1 m 5 L ELEE m§
LI L u L] Th 1 m]
n |] "
im 1 mE im - L CLN
1 m [1 1 (B | i
| - " 1 - o [| 1
BRI L [n I = o mEa 1
[] 1 [O IEE . EmE I Em 1
- 1 [1
1 1] 1
1 1 T .
L] o - 1
| - m o | [] — 1 m
1 1 om 1 11
-
ni 1 § 1
L] - 1

" UMMM 1020 0 T OO O 10T

Zoom Out Ignore Ports

EPUB/0fb9d257b4105b54c771339ee39e5e86d91113372b22efead634312e.png
1 would be the happiest lisper in the world if T didn't h
/github.con/garlicox1/cl-webui/issues/1). I can run my example just fine, but nothing h
e second time :/ I don't know if it's a WebUI thing
so I'U1 give this more time.

lution of this bl

the third s post is my favourite! o/

Fortunately thoug
CLOG Frame (webview.h for all)

/tree/main/cl
tied to

://github. con/rabbibotton/cl

framework. However, it is “not Lo

to Common Lisp!

CLOG Frame is a short C++ program that builds an executable that takes

Database

BOOK

BOOK
SHELF lisp
TAG

BOOK-TAGS

Compile it on GNU/Linux like this:

ve an annoying issue. See [£1

(https: /@
ppens tha

the bindings, my system, my build of WebUL.2

Admin

PTOR (host *, port 4284)>
tart-app)

ASY-ROUTES - A
(cosmo-admin-demo
rt 4284.

#<EASY -ROUTE
AOC-2024-08:
Application started on p
; No value
A0C-2024-08> (uiop:launch-program (list *./clogframe"
dnin
(format nil "~A/admin/" 4284)
window dimensions (strings)
280" "840"))

#<UTOP/LAUN
127.0.0.1
SLinux x86_64) AppleWebKit/605
127.0.0.1 - [2024-12-09 20:35

H-PROGRAN: : PROCESS-INFO_{1004730143}>

[2024-12-09 20:35:28] "GET /admin/ HTTP/1.1" 302 348

1.15 (KHTML, like Gecko) Version/16.0 Safari/605.1.15

28] "GET /loginzreferer-route=/adnin/ HTTP/1.1"
Version/16.0

L0.0.1:4284/10
5.1.15 (KHTHL,

78E28DFESB4BF3:
/" "Mozilla/s.
Lo safari/ees
86 "http://
lla/5.0 (x11;
Y605.1.1:
://127.0.0.
(x11; Ubunt

5

B6 "http://127.
L15 (KHTML, il

//127.0.0.1
L, like 6

o -
115

ttp://;
(KHTHL,

/127.0.0
L, like G
B "http://127.
L15 (KHTWL, il

:36:49] mito-admin mito-admin.lisp (slot-value?) -

EPUB/imagessections101.png

