

C++ se court-circuite le constructeur de copie

Posté par Adrien Jeser le 11 décembre 2016 à 20:11.
Édité par Oliver, Davy Defaud, lmg HS, gbdivers, gipoisson, Benoît Sibaud, palm123 et Storm.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	c++17

	c++

[image: C et C++]

Le calendrier de l’Avent du C++ continue. Après quelques trous dans le calendrier, aujourd’hui une nouvelle surprise : le court-circuit du constructeur de copie.

Cette fonctionnalité est présente dans le C++ depuis la nuit des temps et pourtant peu connue, alors que ses effets de bords peuvent être redoutables. Cette dépêche très pédagogique explique tous les détails d’une optimisation ultime.

[image: Une nerd s’électrocute en touchant la vieille tour C++ de sa voisine à cause des effets de bords du court-circuit du constructeur de copie (C++98 copy elision)]

Sommaire

	
Terminologie
	Élision

	Constructeur de copie

	Le constructeur de copie peut être coûteux

	Élider le constructeur de copie

	Explications

	Et le constructeur de déplacement ?

	
Cas autorisés
	Cas 1 : Un objet temporaire utilisé pour initialiser un autre objet

	Cas 2 : Retour par valeur pour une variable sur le point de sortir de sa portée

	Cas 3 : Levée ou capture d’une exception par valeur

	
Problématiques
	Inconvénient 1 : Type indéplaçable

	
Inconvénient 2 : Un code portable est moins performant que l’élision
	2.1. Retour par valeur

	2.2. Paramètre de sortie

	Inconvénient 3 : Un code portable est moins naturel

	Conclusion

	Réutilisation

	Les auteurs

	Continuer à améliorer ce document

	Appel à contribution

Terminologie

Cette dépêche contient des mots français peu utilisées au quotidien. Ces mots sont le résultat de la traduction des termes du standard C++. Pour ne pas être trop perdu, un petit tour de la signification spécifique à cette dépêche.

Élision

	« élision du constructeur de copie » : traduction de l’anglais « copy elision » qui est une optimisation évitant de passer par le constructeur de copie ;

	« élider » : en anglais « elide », supprimer le constructeur de copie ;

	« éluder » : éviter avec adresse le constructeur de copie, éclipser, court‐circuiter, outrepasser, contourner.

Cette dépêche n’utilise pas « éluder », mais « élider », car l’orthographe est proche du terme anglais « elide ».

Constructeur de copie

Cette dépêche utilise la traduction « constructeur de copie » pour l’expression anglaise « copy constructor ». D’autres documents en français utilisent des traductions sensiblement différentes :

	« constructeur par copie » ;

	« constructeur de recopie » ;

	« constructeur par recopie ».

Les auteurs de cette dépêche ont opté pour l’expression « constructeur de copie », car sémantiquement le mot « de » identifie, alors que le mot « par » décrit. Et car l’orthographe de « copie » est plus proche de l’anglais « copy » (un peu comme choisir « paquet » au lieu de « paquetage » pour traduire « package » en informatique). Il en est de même pour « constructeur de déplacement ».

Si vous souhaitez apporter vos idées sur la traduction, merci de vos commentaires constructifs (par copie). ;-)

Le constructeur de copie peut être coûteux

Lors des appels et retours de fonctions, il arrive qu’un objet temporaire soit créé, avant d’être copié à son emplacement mémoire définitif. Cette approche consomme inutilement des ressources (mémoire, temps d’exécution).

struct GrosseStructure
{
 // ... des attributs volumineux
 // et des références vers d'autres objets
};

GrosseStructure f()
{
 GrosseStructure immense;
 // ...

 // Copie de l'objet immense
 // par retour de fonction
 return immense;
}

void g (GrosseStructure arg)
{
 // ...
}

int main()
{
 // Copie d'un objet temporaire
 // dans l'appel de fonction g()
 g(f());
}

Élider le constructeur de copie

Dans certains cas, il est possible d’éviter la copie, en créant directement l’objet à son emplacement de destination final. Le C++98 autorise le compilateur à faire une telle optimisation.

L’exemple suivant construit un objet a par une succession de six constructeurs de copie.

GCC et Clang n’exécutent pas le constructeur de copie. Ces deux compilateurs optimisent le code, même avec l’option -O0 (qui signifie pourtant « pas d’optimisation »). Cette optimisation est quand même désactivée avec -fno-elide-constructors.

#include <iostream>

struct A
{
 int i; // incrémenté à chaque copie
 A() { i = 0; }
 A(A const& a) { i = a.i + 1; }
};

A f() { return A(A()); }

int main()
{
 A a = A(A(A(f())));
 std::cout << "a.i = " << a.i << std::endl;
}

	Option de compilation
	 
	GCC-6.2
	 
	Clang-3.8

	-std=c++98 -O0
	 
	a.i = 0
	 
	a.i = 0

	-fno-elide-constructors
	 
	a.i = 6
	 
	a.i = 6

Explications

Dans l’exemple précédent, la fonction f() crée un objet temporaire A. Le compilateur élide le constructeur de copie et crée cet objet A directement dans la pile d’appel (call stack) de la fonction appelante main().

Le compilateur court‐circuite autant de fois que nécessaire. Cette optimisation s’applique aussi à l’initialisation de copie (copy initialization). Ainsi, l’objet temporaire retourné par la fonction f() est directement construit dans a. Et cela indépendamment de l’extension inline. C’est‐à‐dire que le corps de la fonction f() aurait pu se trouver dans une bibliothèque à part.

Plus généralement, et contrairement au langage C, le standard C++ autorise le compilateur à effectuer toutes les optimisations possibles du moment que le résultat soit conforme à celui attendu par le code source. Et l’élision du constructeur de copie va plus loin, car le standard C++ part du principe que les développeurs codent le constructeur de copie pour faire la même chose que les autres constructeurs, le résultat des constructeurs se valent. Le compilateur ne vérifie pas si les corps des différents constructeurs font la même chose (ce serait trop compliqué).

Avertissement : Le standard C++ privilégie cette optimisation, quitte à ne pas exécuter les instructions du constructeur de copie. Si ton constructeur de copie réalise des opérations particulières parce que tu es certain qu’il sera forcément appelé avec A(A()), alors le compilateur risque de te faire tourner en bourrique !

Et le constructeur de déplacement ?

Le compilateur remplace le constructeur de copie par le constructeur de déplacement quand cela est possible. En revanche, généralement, le compilateur préfère élider le constructeur de copie quand cela est possible, donc ne pas utiliser le constructeur par déplacement.

Nous pouvons nous poser la même question pour les opérateurs d’affectation de copie et de déplacement. Donc, expérimentons un peu plus en généralisant le précédent exemple :

#include <iostream>

int t[6] = { 0, 0, 0, 0, 0, 0 };

struct A
{
 A() { ++t[0]; }
 A(A const&) { ++t[1]; }
 A& operator=(A const&) { ++t[2]; return *this; }
#if __cplusplus > 201100
 A(A &&) { ++t[3]; }
 A& operator=(A &&) { ++t[4]; return *this; }
#endif
 ~A() { ++t[5]; }
};

A f() { return A(A()); }

int main()
{
 { A a = A(A(A(f()))); }

 std::cout << "Dflt = " << t[0] << "\n"
 "Copy = " << t[1] << "\n"
 "CpAs = " << t[2] << "\n"
#if __cplusplus > 201100
 "Move = " << t[3] << "\n"
 "MvAs = " << t[4] << "\n"
#endif
 "Dtor = " << t[5] << '\n';
}

Quatre tests produisent le résultat Élision :

g++ -std=c++98 ; clang++ -std=c++98
g++ -std=c++11 ; clang++ -std=c++11

Deux tests produisent le résultat C++98 :

g++ -std=c++98 -fno-elide-constructors
clang++ -std=c++98 -fno-elide-constructors

Deux tests produisent le résultat C++11 :

g++ -std=c++11 -fno-elide-constructors
clang++ -std=c++11 -fno-elide-constructors

	Résultats
	Élision
	C++98
	C++11

	
Dflt Constructeur par défaut
	1
	1
	1

	
Copy Constructeur de copie
	-
	6
	-

	
CpAs Opérateur d’affectation de copie
	-
	-
	-

	
Move Constructeur de déplacement
	-
	-
	6

	
MvAs Opérateur d’affectation de déplacement
	-
	-
	-

	
Dtor Destructeur
	1
	7
	7

Cas autorisés

Le standard C++11 définit les trois cas suivants pour lesquels le compilateur peut élider le constructeur de copie.

Cas 1 : Un objet temporaire utilisé pour initialiser un autre objet

Ci‐dessous, l’objet temporaire A() peut bénéficier de l’élision. Dans ce cas, le constructeur par défaut A() crée l’argument a directement sur la pile d’appel de la fonction f() :

void f (A a) {}

int main()
{
 f(A());
} // ^--- objet temporaire

Donc, l’objet temporaire n’est pas copié, mais directement créé à l’emplacement mémoire de destination, comme si le constructeur de copie avait été appelé.

Cas 2 : Retour par valeur pour une variable sur le point de sortir de sa portée

Ce sont les fameux « Return Value Optimization » (RVO) et « Named Return Value Optimization » (NRVO) que nous pourrions traduire par :

	
Optimisation du retour par valeur :

A rvo()
{
 return A();
}

int main()
{
 A a = rvo();
}

	
Optimisation du retour par valeur à partir d’une variable nommée :

A nrvo()
{
 A a;
 return a;
}

int main()
{
 A a = nrvo();
}

Cas 3 : Levée ou capture d’une exception par valeur

Note : Dans ce cas, GCC ne réalise pas l’élision. Ce n’est pas parce que le standard l’autorise que les compilateurs doivent l’implémenter. Et ce n’est pas parce que le standard C++98 a normalisé cette pratique que les compilateurs le faisaient depuis les années 90. Les compilateurs les plus populaires ont progressivement implémenté ces optimisations au fur des années.

void f()
{
 A a;
 throw a;
}

int main()
{
 try {
 f();
 } catch (A a) {
 //…
 }
}

Problématiques

Ces optimisations laissées à la discrétion des compilateurs posent quelques problèmes ennuyeux. Le TS P0135r0 indique que le fil de discussion sur ISO C++ Future Proposals a produit une longue liste des inconvénients. Ces inconvénients découlent de la formulation actuelle du standard C++ à propos de cette élision. Les améliorations effectuées entre C++98 et C++14 n’ont pas supprimé ces inconvénients. Voici trois inconvénients parmi les plus notables :

Inconvénient 1 : Type indéplaçable

Le code qui exploite l’élision se heurte aux types indéplaçables. Dans l’exemple suivant, la fonction f() retourne un objet par valeur. Le compilateur sait qu’il peut élider le constructeur de copie et que le constructeur de déplacement ne lui est pas utile. Le développeur sait que le compilateur peut le faire. Tous, humains et logiciels sont d’accord pour dire que ce code est possible.
Mais pas le standard !

struct NonDeplacable
{
 NonDeplacable() = default;
 NonDeplacable(NonDeplacable const&) = default;
 NonDeplacable(NonDeplacable &&) = delete;
}; // ^-- pas de constructeur de déplacement

NonDeplacable f()
{
 return NonDeplacable();
 // Clang-3.9 error: call to deleted constructor of 'NonDeplacable'
 // GCC-7 error: use of deleted function 'NonDeplacable::NonDeplacable(NonDeplacable&&)'
}

int main()
{
 NonDeplacable x = f();
}

Pour rappel, cette optimisation est optionnelle. Et donc, le standard C++ en interdisant l’élision dans ce cas, évite du code C++ « valide » qui ne puisse pas être compilé par les compilateurs ne sachant pas élider.

Cette situation rend très difficile (voire impossible) l’implémentation d’une fabrique ou d’un constructeur nommé pour les types non déplaçables.

De plus, le standard ne permet pas non plus l’initialisation par inférence des objets non déplaçables, c’est‐à‐dire avec le mot‐clef auto. Alors que Herb Sutter, animateur en chef du comité de standardisation du C++, préconise de recourir, le plus souvent, au mot‐clef auto.

int main()
{
 auto x = f(); // Erreur
}

Inconvénient 2 : Un code portable est moins performant que l’élision

L’écriture d’un code portable ne peut pas se baser sur une hypothétique optimisation, d’autant plus si la construction de copie présente des effets de bords, chose peu recommandable de fait. Par exemple, un développeur pourrait hésiter entre ces deux approches ci‐dessous.

2.1. Retour par valeur

Si le compilateur n’élide pas, l’appel du constructeur de copie peut devenir pénalisant, donc ce n’est pas portable (pour des questions de performance).

A f1()
{
 A a;
 a.data = 42;
 return a;
}

int main()
{
 A a = f1();
}

Heureusement, le C++11 prend le relai et impose que la valeur retournée soit non pas copiée, mais déplacée. Si l’objet occupe plus de mémoire que ce que son sizeof va retourner (cas des chaînes, des vecteurs, etc.), alors déplacer va faire une différence : on gagne une copie et ce n’est pas négligeable. En revanche, si l’objet est simple et que son sizeof compte vraiment toute l’information qu’il représente (comme un quaternion), déplacer va coûter aussi cher que copier.

2.2. Paramètre de sortie

Le compilateur écrit directement dans la donnée préalablement construite par l’appelant. Cela permet de limiter la casse si le compilateur n’élide pas, mais cela peut être moins performant que l’élision.

void f2 (A& a)
{
 a.data = 42; // on écrit directement dedans

 // ou on déplace par affectation b dans a
 A b;
 a = std::move(b);
}

int main()
{
 A a;
 f2(a);
}

Cette technique présente à la fois des avantages et des inconvénients. Elle est très dépendante du contexte.

D’un côté, le compilateur ne saura plus résoudre correctement les problèmes d’aliasing sur des fonctions non inline.

De l’autre, on évite de construire un A à chaque appel. Si A est un gros objet, un vector<> par exemple, même avec l’élision, à chaque appel on construit et on libère un objet A. L’approche du paramètre sortant f2(A&a) peut à la place redimensionner ce vector<> et le remplir ensuite. Un code appelant f2(A&a) en boucle permet d’économiser des millions d’allocations et de libérations, l’objet A étant alors un cache extérieur. Les gains réalisés ainsi sont intéressants.

Inconvénient 3 : Un code portable est moins naturel

C’est le point le plus important de cette dépêche, l’intérêt d’écrire A f1() plutôt que void f1(A& out). Mais pourquoi donc cette dépêche s’obstine à vouloir écrire A f1() alors que void f1(A& out) fait très bien l’affaire ?

    Car utiliser A f1() est bien plus naturel !

En mathématiques, nous écrivons y = f(x), c’est naturel, notre cerveau est habitué à penser comme cela. Alors pourquoi on devrait écrire f(x_in,y_out) ?

Réponse : Les développeurs sont priés d’écrire f(x_in,y_out) car y = f(x) n’est pas portable (pour les raisons évoquées sur les points précédents).

Ce serait bien de pouvoir coder avec le retour par valeur A f() { return A(); } afin de porter la sémantique d’exécution du logiciel et donc de mieux comprendre et maintenir le code source, non ?

Conclusion

Cette dépêche présente une optimisation intéressante permise par le standard C++, mais qui malheureusement n’est pas vraiment exploitée.

Alors, que faire pour résoudre tous ces inconvénients et démocratiser les possibilités de code offertes par l’élision du constructeur de copie ?

Réponse surprise dans la prochaine dépêche… :-)

Réutilisation

Le texte de cette dépêche est protégé par le droit d’auteur la gauche d’auteur et réutilisable sous licence CC BY-SA 4.0. Les images utilisées sont aussi sous licence libre (cliquer sur l’image pour plus de détails).

Donc, n’hésitez pas à réutiliser ce contenu libre pour créer, par exemple, des supports de formation, des présentations (meetups), des publications sur d’autres blogs, des articles pour des magazines, et aussi un article C++17 sur Wikipédia dès que Wikipédia utilisera la licence CC BY-SA 4.0.   ٩(•‿•)۶

Les auteurs

Par respect de la licence, merci de créditer les nombreux auteurs :

	les principaux auteurs sont Adrien Jeser, lmg HS, gbdivers et Oliver H. ;

	les nombreux autres contributeurs ayant contribué sur l’ancêtre de cette dépêche ou sur le dépôt Git sont eggman, Yves Bourguignon, Storm, gorbal, palm123, khivapia, BAud, Segfault, Benoît Sibaud, Lucas, cracky, Martin Peres, RyDroid, olibre et Guss.

Continuer à améliorer ce document

Malgré tout le soin apporté, il reste certainement des oublis, des ambiguïtés, des fôtes… Bien que cette dépêche restera figée sur le site LinuxFr.org, il est possible de continuer à l’enrichir sur le dépôt Git du Groupe des utilisateurs C++ francophone (C++FRUG). C’est donc sur ce dépôt que se trouve les versions les plus à jour. (ღ˘⌣˘ღ)

Appel à contribution

Nous nous efforçons de vous fournir une dépêche de qualité chaque jour ouvré. Et en plus, avec une illustration sympathique. Mais cela demande beaucoup de travail et tenir les délais n’est pas toujours simple.

Merci de nous donner un coup de main, que ce soit sur la correction orthographique, le dessin, la lecture des spécifications techniques, la rédaction d’une nouvelle dépêche à intégrer au calendrier de l’Avent du C++. Tu peux aussi apporter ta contribution à la dépêche Faut‐il continuer à apprendre le C++ ?.

Rejoins‐nous sur la page du groupe de travail C++ sur LinuxFr.org (un compte est nécessaire pour y accéder).

À suivre…

Aller plus loin

	
1ᵉʳ décembre « C++17 fixe l’ordre d’évaluation des expressions »
(222 clics)

	
2 décembre « C++17 indique la disponibilité des entêtes »
(185 clics)

	
5 décembre « C++17 branche à la compilation »
(173 clics)

	
7 décembre « C++17 exprime la virgule flottante en hexadécimal »
(167 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/5cb3d04b5aef5a6bce6b85c3dfc86b0e19277d81a531058fa3245be5.gif
argzzZZZZZ

.du court—circuit
du constructeur

Quand est—ce
que tu te décides
a changer ta vieille Attention aux
bécane C++ ? effets de M
T

bords du..

EPUB/imagessections78.png
%

